Sending data from website to BigQuery using Pub/Sub and Cloud Functions - google-bigquery

Here's what I'm trying to accomplish
A visitor lands on my website
Javascript collects some information and sends a hit
The hit is processed and inserted into BigQuery
And here's how I have planned to solve it
The hit is sent to Cloud Functions HTTP trigger (using Ajax)
Cloud Functions sends a message to Pub/Sub
Pub/Sub sends data to another Cloud Function using a Pub/Sub trigger
The second Cloud Function processes the hit into Biguery row and inserts it into BigQuery
Is there a simpler way to solve this?
Some other details to take into account
There are around 1 million hits a day
Don't want to use Cloud Dataflow because it inflates the costs
Can't (probably) skip Pub/Sub because some hits are sent when a person is leaving the site and the request might not have enough time to process everything.

You can perform a Big Query streaming, this one is less expensive and you avoid reach the Load Jobs quotas 1000 per table per day.
Another option is if you don't mind that the data spend a lot of time loading, you can store all the info in a Cloud Storage bucket and then load all the data with a transfer. You can program it in order that data be uploaded daily. This solution is focus in a batch environment in which you will store all the info in one side and then you transfer it to the final destination. If you only want to streaming the solution that you mentioned is ok.
It’s up to you to choose the option that better fits to your specific usage.

Related

PubSub topic with binary data to BigQuery

I'm expected to have thousands of sensors sending telemetry data at 10FPS with around 1KB of binary data per frame, using IOT Core, meaning I'll get it via PubSub. I'd like to get that data to BigQuery, and no processing is needed.
As Dataflow don't have a template capable of dealing with binary data, and working with it seems a bit cumbersome, I'd like to try to avoid it and go full serverless.
Question is, what's my best alternative?
I've thought about Cloud Run service running an express app to accept the data from PubSub, and using global variable to accumulate around 500 rows in ram, then dump it using BigQuery's insert() method (NodeJS client).
How reasonable is that? Will I gain something from accumulation, or should I just insert to bigquery every single incoming row?
Streaming Ingestion
If your requirement is to analyze high volumes of continuously arriving data with near-real-time dashboards and queries, streaming inserts would be a good choice. The quotas and limits for streaming inserts can be found here.
Since you are using the Node.js client library, use the BigQuery legacy streaming API's insert() method as you have already mentioned. The insert() method streams one row at a time irrespective of accumulation of rows.
For new projects, the BigQuery Storage Write API is recommended as it is cheaper and has an enriched feature set than the legacy API does. The BigQuery Storage Write API only supports Java, Python and Go(in preview) client libraries currently.
Batch Ingestion
If your requirement is to load large, bounded data sets that don’t have to be processed in real-time, prefer batch loading. BigQuery batch load jobs are free. You only pay for storing and querying the data but not for loading the data. Refer to quotas and limits for batch load jobs here. Some more key points on batch loading jobs have been quoted from this article.
Load performance is best effort
Since the compute used for loading data is made available from a shared pool at no cost to the user,
BigQuery does not make guarantees on performance and available
capacity of this shared pool. This is governed by the fair scheduler
allocating resources among load jobs that may be competing with loads
from other users or projects. Quotas for load jobs are in place to
minimize the impact.
Load jobs do not consume query capacity
Slots used for querying data are distinct from the slots used for ingestion. Hence, data
ingestion does not impact query performance.
ACID semantics
For data loaded through the bq load command, queries will either reflect the presence of all or none of the data .
Queries never scan partial data.

How to batch process data from Google Pub/Sub to Cloud Storage using Dataflow?

I'm building a Change Data Capture pipeline that reads data from a MYSQL database and creates a replica in BigQuery. I'll be pushing the changes in Pub/Sub and using Dataflow to transfer them to Google Cloud Storage. I have been able to figure out how to stream the changes, but I need to run batch processing for a few tables in my Database.
Can Dataflow be used to run a batch job while reading from an unbounded source like Pub/Sub? Can I run this batch job to transfer data from Pub/Sub to Cloud Storage and then load this data to BigQuery? I want a batch job because a stream job costs more.
Thank you for the precision.
First, when you use PubSub in Dataflow (Beam framework), it's only possible in streaming mode
Cloud Pub/Sub sources and sinks are currently supported only in streaming pipelines, during remote execution.
If your process don't need realtime, you can skip Dataflow and save money. You can use Cloud Functions or Cloud Run for the process that I propose you (App Engine also if you want, but not my first recommendation).
In both cases, create a process (Cloud Run or Cloud Function) that is triggered periodically (every week?) by Cloud Scheduler.
Solution 1
Connect your process to the pull subscription
Every time that you read a message (or a chunk of message, for example 1000), write stream into BigQuery. -> However, stream write is not free on big Query ($0.05 per Gb)
Loop until the queue is empty. Set the timeout to the max value(9 minutes with Cloud Function, 15 minutes to Cloud Run) to prevent any timeout issue
Solution 2
Connect your process to the pull subscription
Read a chunk of messages (for example 1000) and write them in memory (into an array).
Loop until the queue is empty. Set the timeout to the max value(9 minutes with Cloud Function, 15 minutes to Cloud Run) to prevent any timeout issue. Set also the memory to the max value (2Gb) for preventing out of memory crashes.
Create a load job into BigQuery from your in memory data array. -> Here the load job is free and you are limited to 1000 load jobs per day and per table.
However, this solution can fail if your app + the data size is larger than the ma memory value. An alternative, is to create a file into GCS every, for example, each 1 million of rows (depends the size and the memory footprint of each row). Name the file with a unique prefix, for example the date of the day (YYYYMMDD-tempFileXX), and increment the XX at each file creation. Then, create a load job, not from data in memory, but with data in GCS with a wild card in the file name (gs://myBucket/YYYYMMDD-tempFile*). Like this all the files which match with the prefix will be loaded.
Recommendation The PubSub messages are kept up to 7 days into a pubsub subscription. I recommend you to trigger your process at least every 3 days for having time to react and debug before message deletion into the subscription.
Personal experience The stream write into BigQuery is cheap for a low volume of data. For some cents, I recommend you to consider the 1st solution is you can pay for this. The management and the code are smaller/easier!

Pull data from HTTP request API to Google Cloud

I have an app that sending me data from an API. The data is semi-structured (json data)
I would like to send this data to Google Big Query in order to stock all the information.
However, I'm not able to find how can I do it properly.
So far I have used Node JS on my own server to get the data using POST request.
Could you please help me ? Thnak.
You can use bigquery API to do streaming inserts.
You can also write the data to PubSub or Google Cloud Storage and use dataflow pipelines to load them into bigquery (you can either use streaming inserts (incur costs) or batch load jobs (free))
You can also log in stackdriver and from there you can select and send to bigquery (there already exists direct options for it in GCP, note that under the hood it performs streaming inserts)
If you feel that setting up dataflow is complicated, you can store your files and perform batch load jobs by directly calling bigquery API. Note that there are limits on number of batch loads you can make in a day over a particular table (1000 per day)
There is a page in the official documentation that lists all the possibilities of loading data to BigQuery.
For the simplicity, you can just send data from your local data soruce. You should use the Google Cloud client libraries for Big Query. Here you have a guide on how to do that as well as a relevant code example.
But my honest recommendation is to send data to Google Cloud Storage and from there, to load it to BigQuery. This way the whole process will be more stable.
You can check all the options from the first link that I've posted and choose what you think that will fit best with your workflow.
Keep in mind the limitations of this process.

Service that does advanced queries on a data set, and automatically returns relevant updated results every time new data is added to the set?

I'm looking for a cloud service that can do advanced statistics calculations on a large amount of votes submitted by users, in "real time".
In our app, users can submit different kind of votes like picking a favorite, rating 1-5, say yes/no etc. on various topics.
We also want to show "live" statistics to the user, showing the popularity of a person etc. This will be generated by a rather complex SQL where we are calculating the average number of times a person was picked as favorite, divided by total number of votes and the number of games in which the person has been participating etc. And the score for the latest X games should count higher than the overall score for all games. This is just an example, there are several other SQL queries with similar complexity.
All our presentable data (including calculated statistics) is served from Firestore documents, and the votes will be saved as Firestore documents.
Ideally, the Firebase-backend (functions, firestore etc) should not need to know about the query logic.
What I wish for is a pay as you go cloud service that does the following:
I define some schemas and set up the queries we need for the statistics we have (15-20 different SQLs). Like setting up views in MySQL
On every vote, we push the vote data to this service, which will store it in a row.
The service should then, based on its knowledge about the defined queries, and the content of the pushed vote data, determine which statistics that are affected by the newly added row, and recalculate these. A specific vote type can affect one or more statistics.
Every time a statistic is recalculated, the result should be automatically pushed back to our Firebase backend (for instance by calling an HTTPS endpoint that hits a cloud function) - so we can update the relevant Firestore documents.
The service should be able to throttle the calculations, like only regenerating new statistics every 1 minute despite having several votes per second on the same topic.
Is there any product like this in the market? Or can it be built by combining available cloud services? And what is the official term for such a product, if I should search for it myself?
I know that I can probably build a solution like this myself, and run it on a cloud hosted database server, which can scale as our need grows - but I believe that I'm not the first developer with a need of this, so I hope that someone has solved it before me :)
You can leverage the existing cloud services available on the Google Cloud Platform.
Google BigQuery, Google Cloud Firestore, Google App Engine (CRON Jobs), Google Cloud Tasks
The services can be used to solve the problems mentioned above:
1) Google BigQuery : Here you can define schema for the data on which you're going to run the SQL queries. BigQuery supports Standard and legacy SQL queries.
2) Every vote can be pushed to the defined BigQuery tables using its streaming insert service.
3) Every vote pushed can trigger the recalculation service which calculates the statistics by executing the defined SQL queries and the query results can be stored as documents in collections in Google Cloud Firestore.
4) Google Cloud Firestore: Here you can store the live statistics of the user. This is a real time database, so you'll be able to configure listeners for the modifications to the statistics and show the modifications as soon as the statistics are recalculated.
5) In the same service which inserts every vote, create a new record with a "syncId" in an another table. The idea is to group a number of votes cast in a particular interval to a its corresponding syncId. The syncId can be suffixed with a timestamp. According to your requirement a particular time interval can be set so that the recalculation can be triggered using CRON jobs service which invokes the recalculation service within the interval. Once the recalculation related to a particular syncId is completed the record corresponding to the syncId should be marked as completed.
We are leveraging the above technologies to build a web application on Google Cloud Platform, where the inputs are recorded on Google Firestore and then stream-inserted to Google BigQuery. The data stored in BigQuery is queried after 30 sec of each update using SQL queries and the query results are stored in Google Cloud Firestore to serve dashboards which are automatically updated using listeners configured for the collection in which the dashboard information is stored.

Inserting into BigQuery via load jobs (not streaming)

I'm looking to use Dataflow to load data into BigQuery tables using BQ load jobs - not streaming (streaming would cost too much for our use case). I see that the Dataflow SDK has built in support for inserting data via BQ streaming, but I wasn't able to find anything in the Dataflow SDK that supports load jobs out of the box.
Some questions:
1) Does the Dataflow SDK have OOTB support for BigQuery load job inserts? If not, is it planned?
2) If I need to roll my own, what are some good approaches?
If I have to roll my own, performing a BQ load job using Google Cloud Storage is a multi step process - write the file to GCS, submit the load job via the BQ API, and (optionally) check the status until the job has completed (or failed). I'd hope I could use the existing TextIO.write() functionality to write to GCS, but I'm not sure how I'd compose that step with the subsequent call to the BQ API to submit the load job (and optionally the subsequent calls to check the status of the job until it's complete).
Also, I'd be using Dataflow in streaming mode, with windows of 60 seconds - so I'd want to do the load job every 60 seconds as well.
Suggestions?
I'm not sure which version of Apache Beam you are using, but now it's possible to use a micro-batching tactic using a Stream Pipeline. If you decide one way or another you can use something like this:
.apply("Saving in batches", BigQueryIO.writeTableRows()
.to(destinationTable(options))
.withMethod(Method.FILE_LOADS)
.withJsonSchema(myTableSchema)
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_APPEND)
.withExtendedErrorInfo()
.withTriggeringFrequency(Duration.standardMinutes(2))
.withNumFileShards(1);
.optimizedWrites());
Things to keep in mind
There are 2 different methods: FILE_LOADS and STREAMING_INSERT, if you use the first one you need to include the withTriggeringFrequency and withNumFileShards. For the first one, from my experience, is better to use minutes and the number will depend on the amount of throughput data. If you receive quite a lot try to keep it small, I have seen "stuck errors" when you increase it too much. The shards can affect mostly your GCS billing, if you add to much shards it will create more files per table per x amount of minutes.
If your input data size is not so big the streaming insert can work really well and the cost shouldn't be a big deal. In that scenario you can use STREAMING_INSERT method and remove the withTriggeringFrequency and withNumFileShards. Also, you can add withFailedInsertRetryPolicy like InsertRetryPolicy.retryTransientErrors() so no rows are being lost (keep in mind that idempotency is not guaranteed with STREAM_INSERTS, so duplication is possible)
You can check your Jobs in BigQuery and validate that everything is working! Keep in mind the policies for jobs with BigQuery (I think is 1000 jobs per table) when you are trying to define triggering frequency and shards.
Note: You can always read this article about efficient aggregation pipelines https://cloud.google.com/blog/products/data-analytics/how-to-efficiently-process-both-real-time-and-aggregate-data-with-dataflow
BigQueryIO.write() always uses BigQuery load jobs when the input PCollection is bounded. If you'd like it to also use them if it is unbounded, specify .withMethod(FILE_LOADS).withTriggeringFrequency(...).