I have legacy code writing for pandas.
Now the new data become very large (in CSV format), and it is hard to read_csv with the new files (the file sizes ~ 7,8GB and will be larger in the future).
Could you suggest me the best way to not change the legacy code but still working with large CSV files? I thought to switch to spark but it seems that I will have to change a lot of code.
Many thanks
Have you tried reading the file in chunks? And defining the column dtypes beforehand might help boost the performance
chunksize = 1000000
chunks = pd.read_csv(filepath, dtype=dtypes, chunksize=chunksize)
df = pd.concat((chunk for chunk in chunks), ignore_index=True)
EDIT: Another trick is to reduce the dataframe's memory usage after loading. This is from a Kaggle kernel
def reduce_mem_usage(props):
start_mem_usg = props.memory_usage().sum() / 1024**2
print("Memory usage of properties dataframe is :",start_mem_usg," MB")
NAlist = [] # Keeps track of columns that have missing values filled in.
for col in props.columns:
if props[col].dtype != object: # Exclude strings
# Print current column type
print("******************************")
print("Column: ",col)
print("dtype before: ",props[col].dtype)
# make variables for Int, max and min
IsInt = False
mx = props[col].max()
mn = props[col].min()
# Integer does not support NA, therefore, NA needs to be filled
if not np.isfinite(props[col]).all():
NAlist.append(col)
props[col].fillna(mn-1,inplace=True)
# test if column can be converted to an integer
asint = props[col].fillna(0).astype(np.int64)
result = (props[col] - asint)
result = result.sum()
if result > -0.01 and result < 0.01:
IsInt = True
# Make Integer/unsigned Integer datatypes
if IsInt:
if mn >= 0:
if mx < 255:
props[col] = props[col].astype(np.uint8)
elif mx < 65535:
props[col] = props[col].astype(np.uint16)
elif mx < 4294967295:
props[col] = props[col].astype(np.uint32)
else:
props[col] = props[col].astype(np.uint64)
else:
if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max:
props[col] = props[col].astype(np.int8)
elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max:
props[col] = props[col].astype(np.int16)
elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max:
props[col] = props[col].astype(np.int32)
elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max:
props[col] = props[col].astype(np.int64)
# Make float datatypes 32 bit
else:
props[col] = props[col].astype(np.float32)
# Print new column type
print("dtype after: ",props[col].dtype)
print("******************************")
# Print final result
print("___MEMORY USAGE AFTER COMPLETION:___")
mem_usg = props.memory_usage().sum() / 1024**2
print("Memory usage is: ",mem_usg," MB")
print("This is ",100*mem_usg/start_mem_usg,"% of the initial size")
return props, NAlist
You can simply apply the above function to your dataframe, and it will help especially in cases where your data has many numeric columns.
Related
I need to build a relief profile graph by coordinates, I have a csv file with 12,000,000 lines. searching through a csv file of the same height takes about 2 - 2.5 seconds. I rewrote the csv to parquet and it helped me save some time, it takes about 1.7 - 1 second to find one height. However, I need to build a profile for 500 - 2000 values, which makes the time very long. In the future, you may have to increase the base of the csv file, which will slow down this process even more. In this regard, my question is, is it possible to somehow reduce the processing time of values?
Code example:
import dask.dataframe as dk
import numpy as np
import pandas as pd
import time
filename = 'n46_e032_1arc_v3.csv'
df = dk.read_csv(filename)
df.to_parquet('n46_e032_1arc_v3_parquet')
Latitude1y, Longitude1x = 46.6276, 32.5942
Latitude2y, Longitude2x = 46.6451, 32.6781
sec, steps, k = 0.00027778, 1, 11.73
Latitude, Longitude = [Latitude1y], [Longitude1x]
sin, cos = Latitude2y - Latitude1y, Longitude2x - Longitude1x
y, x = Latitude1y, Longitude1x
while Latitude[-1] < Latitude2y and Longitude[-1] < Longitude2x:
y, x, steps = y + sec * k * sin, x + sec * k * cos, steps + 1
Latitude.append(y)
Longitude.append(x)
time_start = time.time()
long, elevation_data = [], []
df2 = dk.read_parquet('n46_e032_1arc_v3_parquet')
for i in range(steps + 1):
elevation_line = df2[(Longitude[i] <= df2['x']) & (df2['x'] <= Longitude[i] + sec) &
(Latitude[i] <= df2['y']) & (df2['y'] <= Latitude[i] + sec)].compute()
elevation = np.asarray(elevation_line.z.tolist())
if elevation[-1] < 0:
elevation_data.append(0)
else:
elevation_data.append(elevation[-1])
long.append(30 * i)
plt.bar(long, elevation_data, width = 30)
plt.show()
print(time.time() - time_start)
Here's one way to solve this problem using KD trees. A KD tree is a data structure for doing fast nearest-neighbor searches.
import scipy.spatial
tree = scipy.spatial.KDTree(df[['x', 'y']].values)
elevations = df['z'].values
long, elevation_data = [], []
for i in range(steps):
lon, lat = Longitude[i], Latitude[i]
dist, idx = tree.query([lon, lat])
elevation = elevations[idx]
if elevation < 0:
elevation = 0
elevation_data.append(elevation)
long.append(30 * i)
Note: if you can make assumptions about the data, like "all of the points in the CSV are equally spaced," faster algorithms are possible.
It looks like your data might be on a regular grid. If (and only if) every combination of x and y exist in your data, then it probably makes sense to turn this into a labeled 2D array of points, after which querying the correct position will be very fast.
For this, I'll use xarray, which is essentially pandas for N-dimensional data, and integrates well with dask:
# bring the dataframe into memory
df = dk.read('n46_e032_1arc_v3_parquet').compute()
da = df.set_index(["y", "x"]).z.to_xarray()
# now you can query the nearest points:
desired_lats = xr.DataArray([46.6276, 46.6451], dims=["point"])
desired_lons = xr.DataArray([32.5942, 32.6781], dims=["point"])
subset = da.sel(y=desired_lats, x=desired_lons, method="nearest")
# if you'd like, you can return to pandas:
subset_s = subset.to_series()
# you could do this only once, and save the reshaped array as a zarr store:
ds = da.to_dataset(name="elevation")
ds.to_zarr("n46_e032_1arc_v3.zarr")
I have say 65,000 .csv files that I need to work with in julia language.
The goal is to perform basic statistics on the data set.
I had some ways of joining all the data sets
#1 - set a common index and leftjoin() - perform statistics row wise
#2 - vcat() the dataframes on top of each other - vertically stacked use group by
Eitherway the final data frames are very large ! and become slow in processing
Is there an efficient way of doing this ?
I thought of performing either #1 or #2 and splitting the joining operations in thirds, lets say after 20,000 joins save to .csv and operate in chunks then at the end join all 3 in one last operation.
Well not sure how to replicate making 65k .csv files but basically below I loop through the files in the directory, load the csv then vcat() to one df. Question more relating to if there is a better way to manage the size of the operation. vcat() makes something grow. Ahead of time maybe I can cycle through the .csv files, obtain file dimensions per .csv, initialize the full dataframe to final output size, then cycle through each .csv row by row and populate the initialized df.
using CSV
using DataFrames
# read all files in directory
csv_dir_tmax = cd(readdir, "C:/Users/andrew.bannerman/Desktop/Julia/scripts/GHCN data/ghcnd_all_csv/tmax")
# initialize outputs
tmax_all = DataFrame(Date = [], TMAX = [])
c=1
for c = 1:length(csv_dir_tmax)
print("Starting csv file ", csv_dir_tmax[c]," - Iteration ",c,"\n")
if c <= length(csv_dir_tmax)
csv_tmax = CSV.read(join(["C:/Users/andrew.bannerman/Desktop/Julia/scripts/GHCN data/ghcnd_all_csv/tmax/", csv_dir_tmax[c]]), DataFrame, header=true)
tmax_all = vcat(tmax_all, csv_tmax)
end
end
The following approach should be relatively efficient (assuming that data fits into memory):
tmax_all = reduce(vcat, [CSV.read("YOUR_DIR$x", DataFrame) for x in csv_dir_tmax])
initializing the final output to the total size of final output (like vcat() would finally build). Then populate it element wise seems to be working way better:
# get the dimensions of each .csv files
tmax_all_total_output_size = fill(0, size(csv_dir_tmax,1))
tmin_all_total_output_size = fill(0, size(csv_dir_tmin,1))
tavg_all_total_output_size = fill(0, size(csv_dir_tavg,1))
tmax_dim = Int64[]
tmin_dim = Int64[]
tavg_dim = Int64[]
c=1
for c = 1:length(csv_dir_tmin) # 47484 - last point
print("Starting csv file ", csv_dir_tmin[c]," - Iteration ",c,"\n")
if c <= length(csv_dir_tmax)
tmax_csv = CSV.read(join(["C:/Users/andrew.bannerman/Desktop/Julia/scripts/GHCN data/ghcnd_all_csv/tmax/", csv_dir_tmax[c] ]), DataFrame, header=true)
global tmax_dim = size(tmax_csv,1)
tmax_all_total_output_size[c] = tmax_dim
end
if c <= length(csv_dir_tmin)
tmin_csv = CSV.read(join(["C:/Users/andrew.bannerman/Desktop/Julia/scripts/GHCN data/ghcnd_all_csv/tmin/", csv_dir_tmin[c]]), DataFrame, header=true)
global tmin_dim = size(tmin_csv,1)
tmin_all_total_output_size[c] = tmin_dim
end
if c <= length(csv_dir_tavg)
tavg_csv = CSV.read(join(["C:/Users/andrew.bannerman/Desktop/Julia/scripts/GHCN data/ghcnd_all_csv/tavg/", csv_dir_tavg[c]]), DataFrame, header=true)
global tavg_dim = size(tavg_csv,1)
tavg_all_total_output_size[c] = tavg_dim
end
end
# sum total dimension of all .csv files
tmax_sum = sum(tmax_all_total_output_size)
tmin_sum = sum(tmin_all_total_output_size)
tavg_sum = sum(tavg_all_total_output_size)
# initialize final output to total final dimension
tmax_date_array = fill(Date("13000101", "yyyymmdd"),tmax_sum)
tmax_array = zeros(tmax_sum)
tmin_date_array = fill(Date("13000101", "yyyymmdd"),tmin_sum)
tmin_array = zeros(tmin_sum)
tavg_date_array = fill(Date("13000101", "yyyymmdd"),tavg_sum)
tavg_array = zeros(tavg_sum)
# initialize outputs
tmax_all = DataFrame(Date = tmax_date_array, TMAX = tmax_array)
tmin_all = DataFrame(Date = tmin_date_array, TMIN = tmin_array)
tavg_all = DataFrame(Date = tavg_date_array, TAVG = tavg_array)
tmax_count = 0
tmin_count = 0
tavg_count = 0
Then begin filling the initialized df.
I have a large time series of np.float64 with a 5-min frequency (size is ~2,500,000 ~=24 years).
I'm using Xarray to represent it in-memory and the time-dimension is named 'time'.
I want to group-by 'time.hour' and then 'time.dayofyear' (or vice-versa) and remove both their mean from the time-series.
In order to do that efficiently, i need to reorder the time-series into a new xr.DataArray with the dimensions of ['hour', 'dayofyear', 'rest'].
I wrote a function that plays with the GroupBy objects of Xarray and manages to do just that although it takes a lot of memory to do that...
I have a machine with 32GB RAM and i still get the MemoryError from numpy.
I know the code works because i used it on an hourly re-sampled version of my original time-series. so here's the code:
def time_series_stack(time_da, time_dim='time', grp1='hour', grp2='dayofyear'):
"""Takes a time-series xr.DataArray objects and reshapes it using
grp1 and grp2. outout is a xr.Dataset that includes the reshaped DataArray
, its datetime-series and the grps."""
import xarray as xr
import numpy as np
import pandas as pd
# try to infer the freq and put it into attrs for later reconstruction:
freq = pd.infer_freq(time_da[time_dim].values)
name = time_da.name
time_da.attrs['freq'] = freq
attrs = time_da.attrs
# drop all NaNs:
time_da = time_da.dropna(time_dim)
# group grp1 and concat:
grp_obj1 = time_da.groupby(time_dim + '.' + grp1)
s_list = []
for grp_name, grp_inds in grp_obj1.groups.items():
da = time_da.isel({time_dim: grp_inds})
s_list.append(da)
grps1 = [x for x in grp_obj1.groups.keys()]
stacked_da = xr.concat(s_list, dim=grp1)
stacked_da[grp1] = grps1
# group over the concatenated da and concat again:
grp_obj2 = stacked_da.groupby(time_dim + '.' + grp2)
s_list = []
for grp_name, grp_inds in grp_obj2.groups.items():
da = stacked_da.isel({time_dim: grp_inds})
s_list.append(da)
grps2 = [x for x in grp_obj2.groups.keys()]
stacked_da = xr.concat(s_list, dim=grp2)
stacked_da[grp2] = grps2
# numpy part:
# first, loop over both dims and drop NaNs, append values and datetimes:
vals = []
dts = []
for i, grp1_val in enumerate(stacked_da[grp1]):
da = stacked_da.sel({grp1: grp1_val})
for j, grp2_val in enumerate(da[grp2]):
val = da.sel({grp2: grp2_val}).dropna(time_dim)
vals.append(val.values)
dts.append(val[time_dim].values)
# second, we get the max of the vals after the second groupby:
max_size = max([len(x) for x in vals])
# we fill NaNs and NaT for the remainder of them:
concat_sizes = [max_size - len(x) for x in vals]
concat_arrys = [np.empty((x)) * np.nan for x in concat_sizes]
concat_vals = [np.concatenate(x) for x in list(zip(vals, concat_arrys))]
# 1970-01-01 is the NaT for this time-series:
concat_arrys = [np.zeros((x), dtype='datetime64[ns]')
for x in concat_sizes]
concat_dts = [np.concatenate(x) for x in list(zip(dts, concat_arrys))]
concat_vals = np.array(concat_vals)
concat_dts = np.array(concat_dts)
# finally , we reshape them:
concat_vals = concat_vals.reshape((stacked_da[grp1].shape[0],
stacked_da[grp2].shape[0],
max_size))
concat_dts = concat_dts.reshape((stacked_da[grp1].shape[0],
stacked_da[grp2].shape[0],
max_size))
# create a Dataset and DataArrays for them:
sda = xr.Dataset()
sda.attrs = attrs
sda[name] = xr.DataArray(concat_vals, dims=[grp1, grp2, 'rest'])
sda[time_dim] = xr.DataArray(concat_dts, dims=[grp1, grp2, 'rest'])
sda[grp1] = grps1
sda[grp2] = grps2
sda['rest'] = range(max_size)
return sda
So for the 2,500,000 items time-series, numpy throws the MemoryError so I'm guessing this has to be my memory bottle-neck. What can i do to solve this ?
Would Dask help me ? and if so how can i implement it ?
Like you, I ran it without issue when inputting a small time series (10,000 long). However, when inputting a 100,000 long time series xr.DataArraythe grp_obj2 for loop ran away and used all the memory of the system.
This is what I used to generate the time series xr.DataArray:
n = 10**5
times = np.datetime64('2000-01-01') + np.arange(n) * np.timedelta64(5,'m')
data = np.random.randn(n)
time_da = xr.DataArray(data, name='rand_data', dims=('time'), coords={'time': times})
# time_da.to_netcdf('rand_time_series.nc')
As you point out, Dask would be a way to solve it but I can't see a clear path at the moment...
Typically, the kind of problem with Dask would be to:
Make the input a dataset from a file (like NetCDF). This will not load the file in memory but allow Dask to pull data from disk one chunk at a time.
Define all calculations with dask.delayed or dask.futures methods for entire body of code up until the writing the output. This is what allows Dask to chunk a small piece of data to read then write.
Calculate one chunk of work and immediately write output to new dataset file. Effectively you ending up steaming one chunk of input to one chunk of output at a time (but also threaded/parallelized).
I tried importing Dask and breaking the input time_da xr.DataArray into chunks for Dask to work on but it didn't help. From what I can tell, the line stacked_da = xr.concat(s_list, dim=grp1) forces Dask to make a full copy of stacked_da in memory and much more...
One workaround to this is to write stacked_da to disk then immediately read it again:
##For group1
xr.concat(s_list, dim=grp1).to_netcdf('stacked_da1.nc')
stacked_da = xr.load_dataset('stacked_da1.nc')
stacked_da[grp1] = grps1
##For group2
xr.concat(s_list, dim=grp2).to_netcdf('stacked_da2.nc')
stacked_da = xr.load_dataset('stacked_da2.nc')
stacked_da[grp2] = grps2
However, the file size for stacked_da1.nc is 19MB and stacked_da2.nc gets huge at 6.5GB. This is for time_da with 100,000 elements... so there's clearly something amiss...
Originally, it sounded like you want to subtract the mean of the groups from the time series data. It looks like Xarray docs has an example for that. http://xarray.pydata.org/en/stable/groupby.html#grouped-arithmetic
The key is to group once and loop over the groups and then group again on each of the groups and append it to list.
Next i concat and use pd.MultiIndex.from_product for the groups.
No Memory problems and no Dask needed and it only takes a few seconds to run.
here's the code, enjoy:
def time_series_stack(time_da, time_dim='time', grp1='hour', grp2='month',
plot=True):
"""Takes a time-series xr.DataArray objects and reshapes it using
grp1 and grp2. output is a xr.Dataset that includes the reshaped DataArray
, its datetime-series and the grps. plots the mean also"""
import xarray as xr
import pandas as pd
# try to infer the freq and put it into attrs for later reconstruction:
freq = pd.infer_freq(time_da[time_dim].values)
name = time_da.name
time_da.attrs['freq'] = freq
attrs = time_da.attrs
# drop all NaNs:
time_da = time_da.dropna(time_dim)
# first grouping:
grp_obj1 = time_da.groupby(time_dim + '.' + grp1)
da_list = []
t_list = []
for grp1_name, grp1_inds in grp_obj1.groups.items():
da = time_da.isel({time_dim: grp1_inds})
# second grouping:
grp_obj2 = da.groupby(time_dim + '.' + grp2)
for grp2_name, grp2_inds in grp_obj2.groups.items():
da2 = da.isel({time_dim: grp2_inds})
# extract datetimes and rewrite time coord to 'rest':
times = da2[time_dim]
times = times.rename({time_dim: 'rest'})
times.coords['rest'] = range(len(times))
t_list.append(times)
da2 = da2.rename({time_dim: 'rest'})
da2.coords['rest'] = range(len(da2))
da_list.append(da2)
# get group keys:
grps1 = [x for x in grp_obj1.groups.keys()]
grps2 = [x for x in grp_obj2.groups.keys()]
# concat and convert to dataset:
stacked_ds = xr.concat(da_list, dim='all').to_dataset(name=name)
stacked_ds[time_dim] = xr.concat(t_list, 'all')
# create a multiindex for the groups:
mindex = pd.MultiIndex.from_product([grps1, grps2], names=[grp1, grp2])
stacked_ds.coords['all'] = mindex
# unstack:
ds = stacked_ds.unstack('all')
ds.attrs = attrs
return ds
I need the indices (as numpy array) of the rows matching a given condition in a table (with billions of rows) and this is the line I currently use in my code, which works, but is quite ugly:
indices = np.array([row.nrow for row in the_table.where("foo == 42")])
It also takes half a minute, and I'm sure that the list creation is one of the reasons why.
I could not find an elegant solution yet and I'm still struggling with the pytables docs, so does anybody know any magical way to do this more beautifully and maybe also a bit faster? Maybe there is special query keyword I am missing, since I have the feeling that pytables should be able to return the matched rows indices as numpy array.
tables.Table.get_where_list() gives indices of the rows matching a given condition
I read the source of pytables, where() is implemented in Cython, but it seems not fast enough. Here is a complex method that can speedup:
Create some data first:
from tables import *
import numpy as np
class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # 32-bit integer
grid_j = Int32Col() # 32-bit integer
pressure = Float32Col() # float (single-precision)
energy = Float64Col() # double (double-precision)
h5file = open_file("tutorial1.h5", mode = "w", title = "Test file")
group = h5file.create_group("/", 'detector', 'Detector information')
table = h5file.create_table(group, 'readout', Particle, "Readout example")
particle = table.row
for i in range(1001000):
particle['name'] = 'Particle: %6d' % (i)
particle['TDCcount'] = i % 256
particle['ADCcount'] = (i * 256) % (1 << 16)
particle['grid_i'] = i
particle['grid_j'] = 10 - i
particle['pressure'] = float(i*i)
particle['energy'] = float(particle['pressure'] ** 4)
particle['idnumber'] = i * (2 ** 34)
# Insert a new particle record
particle.append()
table.flush()
h5file.close()
Read the column in chunks and append the indices into a list and concatenate the list to array finally. You can change the chunk size according to your memory size:
h5file = open_file("tutorial1.h5")
table = h5file.get_node("/detector/readout")
size = 10000
col = "energy"
buf = np.zeros(batch, dtype=table.coldtypes[col])
res = []
for start in range(0, table.nrows, size):
length = min(size, table.nrows - start)
data = table.read(start, start + batch, field=col, out=buf[:length])
tmp = np.where(data > 10000)[0]
tmp += start
res.append(tmp)
res = np.concatenate(res)
I would like to gather numpy array contents from all processors to one. In case all arrays are of the same size, it works. However I don't see a natural way of doing the same task for arrays of proc-dependent size. Please consider the following code:
from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size
if rank >= size/2:
nb_elts = 5
else:
nb_elts = 2
# create data
lst = []
for i in xrange(nb_elts):
lst.append(rank*3+i)
array_lst = numpy.array(lst, dtype=int)
# communicate array
result = []
if rank == 0:
result = array_lst
for p in xrange(1, size):
received = numpy.empty(nb_elts, dtype=numpy.int)
comm.Recv(received, p, tag=13)
result = numpy.concatenate([result, received])
else:
comm.Send(array_lst, 0, tag=13)
My problem is at the "received" allocation. How can I know what is the size to be allocated? Do I have to first send/receive each array size?
Based on a suggestion below, I'll go with
data_array = numpy.ones(rank + 3, dtype=int)
data_array *= rank + 5
print '[{}] data: {} ({})'.format(rank, data_array, type(data_array))
# make all processors aware of data array sizes
all_sizes = {rank: data_array.size}
gathered_all_sizes = comm_py.allgather(all_sizes)
for d in gathered_all_sizes:
all_sizes.update(d)
# prepare Gatherv as described by #francis
nbsum = 0
sendcounts = []
displacements = []
for p in xrange(size):
n = all_sizes[p]
displacements.append(nbsum)
sendcounts.append(n)
nbsum += n
if rank==0:
result = numpy.empty(nbsum, dtype=numpy.int)
else:
result = None
comm_py.Gatherv(data_array,[result, tuple(sendcounts), tuple(displacements), MPI.INT64_T], root=0)
print '[{}] gathered data: {}'.format(rank, result)
In the code you pasted, both Send() and Recv() sends nb_elts elements. The problem is that nb_elts is not the same for every processes... Hence, the number of item received does not match the number of elements that were sent and the program complains:
mpi4py.MPI.Exception: MPI_ERR_TRUNCATE: message truncated
To prevent that, the root process must compute the number of items that the other processes have sent. Hence, in the loop for p in xrange(1, size), nb_elts must be computed according to p, not rank.
The following code based on yours has been corrected. I would add that the natural way to perform this gathering operation is to use Gatherv(). See http://materials.jeremybejarano.com/MPIwithPython/collectiveCom.html and the documentation of mpi4py for instance. I added the corresponding sample code. The only tricky point is that numpy.int is 64bit long. Hence, the Gatherv() uses the MPI type MPI_DOUBLE.
from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size
if rank >= size/2:
nb_elts = 5
else:
nb_elts = 2
# create data
lst = []
for i in xrange(nb_elts):
lst.append(rank*3+i)
array_lst = numpy.array(lst, dtype=int)
# communicate array
result = []
if rank == 0:
result = array_lst
for p in xrange(1, size):
if p >= size/2:
nb_elts = 5
else:
nb_elts = 2
received = numpy.empty(nb_elts, dtype=numpy.int)
comm.Recv(received, p, tag=13)
result = numpy.concatenate([result, received])
else:
comm.Send(array_lst, 0, tag=13)
if rank==0:
print "Send Recv, result= "+str(result)
#How to use Gatherv:
nbsum=0
sendcounts=[]
displacements=[]
for p in xrange(0,size):
displacements.append(nbsum)
if p >= size/2:
nbsum+= 5
sendcounts.append(5)
else:
nbsum+= 2
sendcounts.append(2)
if rank==0:
print "nbsum "+str(nbsum)
print "sendcounts "+str(tuple(sendcounts))
print "displacements "+str(tuple(displacements))
print "rank "+str(rank)+" array_lst "+str(array_lst)
print "numpy.int "+str(numpy.dtype(numpy.int))+" "+str(numpy.dtype(numpy.int).itemsize)+" "+str(numpy.dtype(numpy.int).name)
if rank==0:
result2=numpy.empty(nbsum, dtype=numpy.int)
else:
result2=None
comm.Gatherv(array_lst,[result2,tuple(sendcounts),tuple(displacements),MPI.DOUBLE],root=0)
if rank==0:
print "Gatherv, result2= "+str(result2)