How to flag users on all days before last day - hive

I have this case on SQL and I need some help:
I want to add a new column on this query, to flag all days less than the user's last day.
So if the user last_day is 1-2-2019 and the date_ 1-1-2019, I want to flag the user on that day because it's before his last_day.
E.g: user_id=A1200 , first_day on (10-1-2019) and last_day (20-1-2019) and he didn't have any records in between, I want to add a new column and set all records from (10-1-2019) till (20-1-2019) with 1 for that user.
This is my query:
select user_id,date_, first_day, last_day
from orders g
left join (select user_id, min(date_) as first_day
from orders
group by user_id) m on m.user_id=g.user_id
left join (select user_id, max(date_) as last_day
from orders
group by user_id)l on l.user_id=g.user_id
Thanks in advance

Related

In Postgres how do I write a SQL query to select distinct values overall but aggregated over a set time period

What I mean by this is if I have a table called payments with a created_at column and user_id column I want to select the count of purchases aggregated weekly (can be any interval I want) but only selecting first time purchases e.g. if a user purchased for the first time in week 1 it would be counted but if he purchased again in week 2 he would not be counted.
created_at
user_id
timestamp
1
timestamp
1
This is the query I came up with. The issue is if the user purchases multiple times they are all included. How can I improve this?
WITH dates AS
(
SELECT *
FROM generate_series(
'2022-07-22T15:30:06.687Z'::DATE,
'2022-11-21T17:04:59.457Z'::DATE,
'1 week'
) date
)
SELECT
dates.date::DATE AS date,
COALESCE(COUNT(DISTINCT(user_id)), 0) AS registrations
FROM
dates
LEFT JOIN
payment ON created_at::DATE BETWEEN dates.date AND dates.date::date + '1 ${dateUnit}'::INTERVAL
GROUP BY
dates.date
ORDER BY
dates.date DESC;
You want to count only first purchases. So get those first purchases in the first step and work with these.
WITH dates AS
(
SELECT *
FROM generate_series(
'2022-07-22T15:30:06.687Z'::DATE,
'2022-11-21T17:04:59.457Z'::DATE,
'1 week'
) date
)
, first_purchases AS
(
SELECT user_id, MIN(created_at:DATE) AS purchase_date
FROM payment
GROUP BY user_id
)
SELECT
d.date,
COALESCE(COUNT(p.purchase_date), 0) AS registrations
FROM
dates d
LEFT JOIN
first_purchases p ON p.purchase_date >= d.date
AND p.purchase_date < d.date + '1 ${dateUnit}'::INTERVAL
GROUP BY
d.date
ORDER BY
d.date DESC;

Month over Month percent change in user registrations

I am trying to write a query to find month over month percent change in user registration. \
Users table has the logs for user registrations
user_id - pk, integer
created_at - account created date, varchar
activated_at - account activated date, varchar
state - active or pending, varchar
I found the number of users for each year and month. How do I find month over month percent change in user registration? I think I need a window function?
SELECT
EXTRACT(month from created_at::timestamp) as created_month
,EXTRACT(year from created_at::timestamp) as created_year
,count(distinct user_id) as number_of_registration
FROM users
GROUP BY 1,2
ORDER BY 1,2
This is the output of above query:
Then I wrote this to find the difference in user registration in the previous year.
SELECT
*
,number_of_registration - lag(number_of_registration) over (partition by created_month) as difference_in_previous_year
FROM (
SELECT
EXTRACT(month from created_at::timestamp) as created_month
,EXTRACT(year from created_at::timestamp) as created_year
,count( user_id) as number_of_registration
FROM users as u
GROUP BY 1,2
ORDER BY 1,2) as temp
The output is this:
You want an order by clause that contains created_year.
number_of_registration
- lag(number_of_registration) over (partition by created_month order by created_year) as difference_in_previous_year
Note that you don't actually need a subquery for this. You can do:
select
extract(year from created_at) as created_year,
extract(month from created_at) as created_year
count(*) as number_of_registration,
count(*) - lag(count(*)) over(partition by extract(month from created_at) order by extract(year from created_at))
from users as u
group by created_year, created_month
order by created_year, created_month
I used count(*) instead of count(user_id), because I assume that user_id is not nullable (in which case count(*) is equivalent, and more efficient). Casting to a timestamp is also probably superfluous.
These queries work as long as you have data for every month. If you have gaps, then the problem should be addressed differently - but this is not the question you asked here.
I can get the registrations from each year as two tables and join them. But it is not that effective
SELECT
t1.created_year as year_2013
,t2.created_year as year_2014
,t1.created_month as month_of_year
,t1.number_of_registration_2013
,t2.number_of_registration_2014
,(t2.number_of_registration_2014 - t1.number_of_registration_2013) / t1.number_of_registration_2013 * 100 as percent_change_in_previous_year_month
FROM
(select
extract(year from created_at) as created_year
,extract(month from created_at) as created_month
,count(*) as number_of_registration_2013
from users
where extract(year from created_at) = '2013'
group by 1,2) t1
inner join
(select
extract(year from created_at) as created_year
,extract(month from created_at) as created_month
,count(*) as number_of_registration_2014
from users
where extract(year from created_at) = '2014'
group by 1,2) t2
on t1.created_month = t2.created_month
First off, Why are you using strings to hold date/time values? Your 1st step should to define created_at, activated_at as a proper timestamps. In the resulting query I assume this correction. If this is faulty (you do not correct it) then cast the string to timestamp in the CTE generating the date range. But keep in mind that if you leave it as text you will at some point get a conversion exception.
To calculate month-over-month use the formula "100*(Nt - Nl)/Nl" where Nt is the number of users this month and Nl is the number of users last month. There are 2 potential issues:
There are gaps in the data.
Nl is 0 (would incur divide by 0 exception)
The following handles this by first generating the months between the earliest date to the latest date then outer joining monthly counts to the generated dates. When Nl = 0 the query returns NULL indication the percent change could not be calculated.
with full_range(the_month) as
(select generate_series(low_month, high_month, interval '1 month')
from (select min(date_trunc('month',created_at)) low_month
, max(date_trunc('month',created_at)) high_month
from users
) m
)
select to_char(the_month,'yyyy-mm')
, users_this_month
, case when users_last_month = 0
then null::float
else round((100.00*(users_this_month-users_last_month)/users_last_month),2)
end percent_change
from (
select the_month, users_this_month , lag(users_this_month) over(order by the_month) users_last_month
from ( select f.the_month, count(u.created_at) users_this_month
from full_range f
left join users u on date_trunc('month',u.created_at) = f.the_month
group by f.the_month
) mc
) pc
order by the_month;
NOTE: There are several places there the above can be shortened. But the longer form is intentional to show how the final vales are derived.

Group by for each row in bigquery

I have a table that stores user comments for each month. Comments are stored using UTC timestamps, I want to get the users that posts more than 20 comments per day. I am able to get the timestamp start and end for each day, but I can't group the comments table by number of comments.
This is the script that I have for getting dates, timestamps and distinct users.
SELECT
DATE(TIMESTAMP_SECONDS(r.ts_start)) AS date,
r.ts_start AS timestamp_start,
r.ts_start+86400 AS timestamp_end,
COUNT(*) AS number_of_comments,
COUNT(DISTINCT s.author) AS dictinct_authors
FROM ((
WITH
shifts AS (
SELECT
[STRUCT(" 00:00:00 UTC" AS hrs,
GENERATE_DATE_ARRAY('2018-07-01','2018-07-31', INTERVAL 1 DAY) AS dt_range) ] AS full_timestamps )
SELECT
UNIX_SECONDS(CAST(CONCAT( CAST(dt AS STRING), CAST(hrs AS STRING)) AS TIMESTAMP)) AS ts_start,
UNIX_SECONDS(CAST(CONCAT( CAST(dt AS STRING), CAST(hrs AS STRING)) AS TIMESTAMP)) + 86400 AS ts_end
FROM
shifts,
shifts.full_timestamps
LEFT JOIN
full_timestamps.dt_range AS dt)) r
INNER JOIN
`user_comments.2018_07` s
ON
(s.created_utc BETWEEN r.ts_start
AND r.ts_end)
GROUP BY
r.ts_start
ORDER BY
number_of_comments DESC
And this is the sample output 1:
The user_comments.2018_07 table is as the following:
More concretely I want the first output 1, has one more column showing the number of authors that have more than 20 comments for the date. How can I do that?
If the goal is only to get the number of users with more than twenty comments for each day from table user_comments.2018_07, and add it to the output you have so far, this should simplify the query you first used. So long as you're not attached to keeping the min/max timestamps for each day.
with nb_comms_per_day_per_user as (
SELECT
day,
author,
COUNT(*) as nb_comments
FROM
# unnest as we don't really want an array
unnest(GENERATE_DATE_ARRAY('2018-07-01','2018-07-31', INTERVAL 1 DAY)) AS day
INNER JOIN `user_comments.2018_07` c
on
# directly convert timestamp to a date, without using min/max timestamp
date(timestamp_seconds(created_utc))
=
day
GROUP BY day, c.author
)
SELECT
day,
sum(nb_comments) as total_comments,
count(*) as distinct_authors, # we have already grouped by author
# sum + if enables to count "very active" users
sum(if(nb_comments > 20, 1, 0)) as very_active_users
FROM nb_comms_per_day_per_user
GROUP BY day
ORDER BY total_comments desc
Also I supposed the column comment containing booleans is not used, as you do not use it in your initial query?

Same output in two different lateral joins

I'm working on a bit of PostgreSQL to grab the first 10 and last 10 invoices of every month between certain dates. I am having unexpected output in the lateral joins. Firstly the limit is not working, and each of the array_agg aggregates is returning hundreds of rows instead of limiting to 10. Secondly, the aggregates appear to be the same, even though one is ordered ASC and the other DESC.
How can I retrieve only the first 10 and last 10 invoices of each month group?
SELECT first.invoice_month,
array_agg(first.id) first_ten,
array_agg(last.id) last_ten
FROM public.invoice i
JOIN LATERAL (
SELECT id, to_char(invoice_date, 'Mon-yy') AS invoice_month
FROM public.invoice
WHERE id = i.id
ORDER BY invoice_date, id ASC
LIMIT 10
) first ON i.id = first.id
JOIN LATERAL (
SELECT id, to_char(invoice_date, 'Mon-yy') AS invoice_month
FROM public.invoice
WHERE id = i.id
ORDER BY invoice_date, id DESC
LIMIT 10
) last on i.id = last.id
WHERE i.invoice_date BETWEEN date '2017-10-01' AND date '2018-09-30'
GROUP BY first.invoice_month, last.invoice_month;
This can be done with a recursive query that will generate the interval of months for who we need to find the first and last 10 invoices.
WITH RECURSIVE all_months AS (
SELECT date_trunc('month','2018-01-01'::TIMESTAMP) as c_date, date_trunc('month', '2018-05-11'::TIMESTAMP) as end_date, to_char('2018-01-01'::timestamp, 'YYYY-MM') as current_month
UNION
SELECT c_date + interval '1 month' as c_date,
end_date,
to_char(c_date + INTERVAL '1 month', 'YYYY-MM') as current_month
FROM all_months
WHERE c_date + INTERVAL '1 month' <= end_date
),
invocies_with_month as (
SELECT *, to_char(invoice_date::TIMESTAMP, 'YYYY-MM') invoice_month FROM invoice
)
SELECT current_month, array_agg(first_10.id), 'FIRST 10' as type FROM all_months
JOIN LATERAL (
SELECT * FROM invocies_with_month
WHERE all_months.current_month = invoice_month AND invoice_date >= '2018-01-01' AND invoice_date <= '2018-05-11'
ORDER BY invoice_date ASC limit 10
) first_10 ON TRUE
GROUP BY current_month
UNION
SELECT current_month, array_agg(last_10.id), 'LAST 10' as type FROM all_months
JOIN LATERAL (
SELECT * FROM invocies_with_month
WHERE all_months.current_month = invoice_month AND invoice_date >= '2018-01-01' AND invoice_date <= '2018-05-11'
ORDER BY invoice_date DESC limit 10
) last_10 ON TRUE
GROUP BY current_month;
In the code above, '2018-01-01' and '2018-05-11' represent the dates between we want to find the invoices. Based on those dates, we generate the months (2018-01, 2018-02, 2018-03, 2018-04, 2018-05) that we need to find the invoices for.
We store this data in all_months.
After we get the months, we do a lateral join in order to join the invoices for every month. We need 2 lateral joins in order to get the first and last 10 invoices.
Finally, the result is represented as:
current_month - the month
array_agg - ids of all selected invoices for that month
type - type of the selected invoices ('first 10' or 'last 10').
So in the current implementation, you will have 2 rows for each month (if there is at least 1 invoice for that month). You can easily join that in one row if you need to.
LIMIT is working fine. It's your query that's broken. JOIN is just 100% the wrong tool here; it doesn't even do anything close to what you need. By joining up to 10 rows with up to another 10 rows, you get up to 100 rows back. There's also no reason to self join just to combine filters.
Consider instead window queries. In particular, we have the dense_rank function, which can number every row in the result set according to groups:
SELECT
invoice_month,
time_of_month,
ARRAY_AGG(id) invoice_ids
FROM (
SELECT
id,
invoice_month,
-- Categorize as end or beginning of month
CASE
WHEN month_rank <= 10 THEN 'beginning'
WHEN month_reverse_rank <= 10 THEN 'end'
ELSE 'bug' -- Should never happen. Just a fall back in case of a bug.
END AS time_of_month
FROM (
SELECT
id,
invoice_month,
dense_rank() OVER (PARTITION BY invoice_month ORDER BY invoice_date) month_rank,
dense_rank() OVER (PARTITION BY invoice_month ORDER BY invoice_date DESC) month_rank_reverse
FROM (
SELECT
id,
invoice_date,
to_char(invoice_date, 'Mon-yy') AS invoice_month
FROM public.invoice
WHERE invoice_date BETWEEN date '2017-10-01' AND date '2018-09-30'
) AS fiscal_year_invoices
) ranked_invoices
-- Get first and last 10
WHERE month_rank <= 10 OR month_reverse_rank <= 10
) first_and_last_by_month
GROUP BY
invoice_month,
time_of_month
Don't be intimidated by the length. This query is actually very straightforward; it just needed a few subqueries.
This is what it does logically:
Fetch the rows for the fiscal year in question
Assign a "rank" to the row within its month, both counting from the beginning and from the end
Filter out everything that doesn't rank in the 10 top for its month (counting from either direction)
Adds an indicator as to whether it was at the beginning or end of the month. (Note that if there's less than 20 rows in a month, it will categorize more of them as "beginning".)
Aggregate the IDs together
This is the tool set designed for the job you're trying to do. If really needed, you can adjust this approach slightly to get them into the same row, but you have to aggregate before joining the results together and then join on the month; you can't join and then aggregate.

RedShift: Alternative to 'where in' to compare annual login activity

Here are the two cases:
Members Lost: Get the distinct count of user ids from 365 days ago who haven't had any activity since then
Members Added: Get the distinct count of user ids from today who don't exist in the previous 365 days.
Here are the SQL statements I've been writing. Logically I feel like this should work (and it does for sample data), but the dataset is 5Million+ rows and takes forever! Is there any way to do this more efficiently? (base_date is a calendar that I'm joining on to build out a 2 year trend. I figured this was faster than joining the 5million table on itself...)
-- Members Lost
SELECT
effective_date,
COUNT(DISTINCT dwuserid) as members_lost
FROM base_date
LEFT JOIN site_visit
-- Get Login Activity for 365th day
ON DATEDIFF(day, srclogindate, effective_date) = 365
WHERE dwuserid NOT IN (
-- Get Distinct Login activity for Current Day (PY) + 1 to Current Day (CY) (i.e. 2013-01-02 to 2014-01-01)
SELECT DISTINCT dwuserid
FROM site_visit b
WHERE DATEDIFF(day, b.srclogindate, effective_date) BETWEEN 0 AND 364
)
GROUP BY effective_date
ORDER BY effective_date;
-- Members Added
SELECT
effective_date,
COUNT(DISTINCT dwuserid) as members_added
FROM base_date
LEFT JOIN site_visit ON srclogindate = effective_date
WHERE dwuserid NOT IN (
SELECT DISTINCT dwuserid
FROM site_visit b
WHERE DATEDIFF(day, b.srclogindate, effective_date) BETWEEN 1 AND 365
)
GROUP BY effective_date
ORDER BY effective_date;
Thanks in advance for any help.
UPDATE
Thanks to #JohnR for pointing me in the right direction. I had to tweak your response a bit because I need to know on any login day how many were "Member Added" or "Member Lost" so it had to be a 365 rolling window looking back or looking forward. Finding the IDs that didn't have a match in the LEFT JOIN was much faster.
-- Trim data down to one user login per day
CREATE TABLE base_login AS
SELECT DISTINCT "dwuserid", "srclogindate"
FROM site_visit
-- Members Lost
SELECT
current."srclogindate",
COUNT(DISTINCT current."dwuserid") as "members_lost"
FROM base_login current
LEFT JOIN base_login future
ON current."dwuserid" = future."dwuserid"
AND current."srclogindate" < future."srclogindate"
AND DATEADD(day, 365, current."srclogindate") >= future."srclogindate"
WHERE future."dwuserid" IS NULL
GROUP BY current."srclogindate"
-- Members Added
SELECT
current."srclogindate",
COUNT(DISTINCT current."dwuserid") as "members_added"
FROM base_login current
LEFT JOIN base_login past
ON current."dwuserid" = past."dwuserid"
AND current."srclogindate" > past."srclogindate"
AND DATEADD(day, 365, past."srclogindate") >= current."srclogindate"
WHERE past."dwuserid" IS NULL
GROUP BY current."srclogindate"
NOT IN should generally be avoided because it has to scan all data.
Instead of joining to the site_visit table (which is presumably huge), try joining to a sub-query that selects UserID and the most recent login date -- that way, there is only one row per user instead of one row per visit.
For example:
SELECT dwuserid, min (srclogindate) as first_login, max(srclogindate) as last_login
FROM site_visit
GROUP BY dwuserid
You could then simplify the queries to something like:
-- Members Lost: Last login was between 12 and 13 months ago
SELECT
COUNT(*)
FROM
(
SELECT dwuserid, min(srclogindate) as first_login, max(srclogindate) as last_login
FROM site_visit
GROUP BY dwuserid
)
WHERE
last_login BETWEEN current_date - interval '13 months' and current_date - interval '12 months'
-- Members Added: First visit in last 12 months
SELECT
COUNT(*)
FROM
(
SELECT dwuserid, min(srclogindate) as first_login, max(srclogindate) as last_login
FROM site_visit
GROUP BY dwuserid
)
WHERE
first_login > current_date - interval '12 months'