I have a table that has aggregations down to the hour level YYYYMMDDHH. The data is aggregated and loaded by an external process (I don't have control over). I want to test the data on a monthly basis.
The question I am looking to answer is: Does every hour in the month exist?
I'm looking to produce output that will return a 1 if the hour exists or 0 if the hour does not exist.
The aggregation table looks something like this...
YYYYMM YYYYMMDD YYYYMMDDHH DATA_AGG
201911 20191101 2019110100 100
201911 20191101 2019110101 125
201911 20191101 2019110103 135
201911 20191101 2019110105 95
… … … …
201911 20191130 2019113020 100
201911 20191130 2019113021 110
201911 20191130 2019113022 125
201911 20191130 2019113023 135
And defined as...
CREATE TABLE YYYYMMDDHH_DATA_AGG AS (
YYYYMM VARCHAR,
YYYYMMDD VARCHAR,
YYYYMMDDHH VARCHAR,
DATA_AGG INT
);
I'm looking to produce the following below...
YYYYMMDDHH HOUR_EXISTS
2019110100 1
2019110101 1
2019110102 0
2019110103 1
2019110104 0
2019110105 1
... ...
In the example above, two hours do not exist, 2019110102 and 2019110104.
I assume I'd have to join the aggregation table against a computed table that contains all the YYYYMMDDHH combos???
The database is Snowflake, but assume most generic ANSI SQL queries will work.
You can get what you want with a recursive CTE
The recursive CTE generates the list of possible Hours. And then a simple left outer join gets you the flag for if you have any records that match that hour.
WITH RECURSIVE CTE (YYYYMMDDHH) as
(
SELECT YYYYMMDDHH
FROM YYYYMMDDHH_DATA_AGG
WHERE YYYYMMDDHH = (SELECT MIN(YYYYMMDDHH) FROM YYYYMMDDHH_DATA_AGG)
UNION ALL
SELECT TO_VARCHAR(DATEADD(HOUR, 1, TO_TIMESTAMP(C.YYYYMMDDHH, 'YYYYMMDDHH')), 'YYYYMMDDHH') YYYYMMDDHH
FROM CTE C
WHERE TO_VARCHAR(DATEADD(HOUR, 1, TO_TIMESTAMP(C.YYYYMMDDHH, 'YYYYMMDDHH')), 'YYYYMMDDHH') <= (SELECT MAX(YYYYMMDDHH) FROM YYYYMMDDHH_DATA_AGG)
)
SELECT
C.YYYYMMDDHH,
IFF(A.YYYYMMDDHH IS NOT NULL, 1, 0) HOUR_EXISTS
FROM CTE C
LEFT OUTER JOIN YYYYMMDDHH_DATA_AGG A
ON C.YYYYMMDDHH = A.YYYYMMDDHH;
If your timerange is too long you'll have issues with the cte recursing too much. You can create a table or temp table with all of the possible hours instead. For example:
CREATE OR REPLACE TEMPORARY TABLE HOURS (YYYYMMDDHH VARCHAR) AS
SELECT TO_VARCHAR(DATEADD(HOUR, SEQ4(), TO_TIMESTAMP((SELECT MIN(YYYYMMDDHH) FROM YYYYMMDDHH_DATA_AGG), 'YYYYMMDDHH')), 'YYYYMMDDHH')
FROM TABLE(GENERATOR(ROWCOUNT => 10000)) V
ORDER BY 1;
SELECT
H.YYYYMMDDHH,
IFF(A.YYYYMMDDHH IS NOT NULL, 1, 0) HOUR_EXISTS
FROM HOURS H
LEFT OUTER JOIN YYYYMMDDHH_DATA_AGG A
ON H.YYYYMMDDHH = A.YYYYMMDDHH
WHERE H.YYYYMMDDHH <= (SELECT MAX(YYYYMMDDHH) FROM YYYYMMDDHH_DATA_AGG);
You can then fiddle with the generator count to make sure you have enough hours.
You can generate a table with every hour of the month and LEFT OUTER JOIN your aggregation to it:
WITH EVERY_HOUR AS (
SELECT TO_CHAR(DATEADD(HOUR, HH, TO_DATE(YYYYMM::TEXT, 'YYYYMM')),
'YYYYMMDDHH')::NUMBER YYYYMMDDHH
FROM (SELECT DISTINCT YYYYMM FROM YYYYMMDDHH_DATA_AGG) t
CROSS JOIN (
SELECT ROW_NUMBER() OVER (ORDER BY NULL) - 1 HH
FROM TABLE(GENERATOR(ROWCOUNT => 745))
) h
QUALIFY YYYYMMDDHH < (YYYYMM + 1) * 10000
)
SELECT h.YYYYMMDDHH, NVL2(a.YYYYMM, 1, 0) HOUR_EXISTS
FROM EVERY_HOUR h
LEFT OUTER JOIN YYYYMMDDHH_DATA_AGG a ON a.YYYYMMDDHH = h.YYYYMMDDHH
Here's something that might help get you started. I'm guessing you want to have 'synthetic' [YYYYMMDD] values? Otherwise, if the value aren't there, then they shouldn't appear in the list
DROP TABLE IF EXISTS #_hours
DROP TABLE IF EXISTS #_temp
--Populate a table with hours ranging from 00 to 23
CREATE TABLE #_hours ([hour_value] VARCHAR(2))
DECLARE #_i INT = 0
WHILE (#_i < 24)
BEGIN
INSERT INTO #_hours
SELECT FORMAT(#_i, '0#')
SET #_i += 1
END
-- Replicate OP's sample data set
CREATE TABLE #_temp (
[YYYYMM] INTEGER
, [YYYYMMDD] INTEGER
, [YYYYMMDDHH] INTEGER
, [DATA_AGG] INTEGER
)
INSERT INTO #_temp
VALUES
(201911, 20191101, 2019110100, 100),
(201911, 20191101, 2019110101, 125),
(201911, 20191101, 2019110103, 135),
(201911, 20191101, 2019110105, 95),
(201911, 20191130, 2019113020, 100),
(201911, 20191130, 2019113021, 110),
(201911, 20191130, 2019113022, 125),
(201911, 20191130, 2019113023, 135)
SELECT X.YYYYMM, X.YYYYMMDD, X.YYYYMMDDHH
-- Case: If 'target_hours' doesn't exist, then 0, else 1
, CASE WHEN X.target_hours IS NULL THEN '0' ELSE '1' END AS [HOUR_EXISTS]
FROM (
-- Select right 2 characters from converted [YYYYMMDDHH] to act as 'target values'
SELECT T.*
, RIGHT(CAST(T.[YYYYMMDDHH] AS VARCHAR(10)), 2) AS [target_hours]
FROM #_temp AS T
) AS X
-- Right join to keep all of our hours and only the target hours that match.
RIGHT JOIN #_hours AS H ON H.hour_value = X.target_hours
Sample output:
YYYYMM YYYYMMDD YYYYMMDDHH HOUR_EXISTS
201911 20191101 2019110100 1
201911 20191101 2019110101 1
NULL NULL NULL 0
201911 20191101 2019110103 1
NULL NULL NULL 0
201911 20191101 2019110105 1
NULL NULL NULL 0
With (almost) standard sql, you can do a cross join of the distinct values of YYYYMMDD to a list of all possible hours and then left join to the table:
select concat(d.YYYYMMDD, h.hour) as YYYYMMDDHH,
case when t.YYYYMMDDHH is null then 0 else 1 end as hour_exists
from (select distinct YYYYMMDD from tablename) as d
cross join (
select '00' as hour union all select '01' union all
select '02' union all select '03' union all
select '04' union all select '05' union all
select '06' union all select '07' union all
select '08' union all select '09' union all
select '10' union all select '11' union all
select '12' union all select '13' union all
select '14' union all select '15' union all
select '16' union all select '17' union all
select '18' union all select '19' union all
select '20' union all select '21' union all
select '22' union all select '23'
) as h
left join tablename as t
on concat(d.YYYYMMDD, h.hour) = t.YYYYMMDDHH
order by concat(d.YYYYMMDD, h.hour)
Maybe in Snowflake you can construct the list of hours with a sequence much easier instead of all those UNION ALLs.
This version accounts for the full range of days, across months and years. It's a simple cross join of the set of possible days with the set of possible hours of the day -- left joined to actual dates.
set first = (select min(yyyymmdd::number) from YYYYMMDDHH_DATA_AGG);
set last = (select max(yyyymmdd::number) from YYYYMMDDHH_DATA_AGG);
with
hours as (select row_number() over (order by null) - 1 h from table(generator(rowcount=>24))),
days as (
select
row_number() over (order by null) - 1 as n,
to_date($first::text, 'YYYYMMDD')::date + n as d,
to_char(d, 'YYYYMMDD') as yyyymmdd
from table(generator(rowcount=>($last-$first+1)))
)
select days.yyyymmdd || lpad(hours.h,2,0) as YYYYMMDDHH, nvl2(t.yyyymmddhh,1,0) as HOUR_EXISTS
from days cross join hours
left join YYYYMMDDHH_DATA_AGG t on t.yyyymmddhh = days.yyyymmdd || lpad(hours.h,2,0)
order by 1
;
$first and $last can be packed in as sub-queries if you prefer.
Related
I have a voucher status history table as a type2 slowly changing dimension table I am trying to get the summary total value of each status by each month before a particular date. This is my schema and insert code:
CREATE TABLE #HDimVouchers(
[HVoucherKey] [bigint] IDENTITY(1,1) NOT NULL,
[Voucher_id] [bigint] NOT NULL,
[VoucherStatusKey] [int] NOT NULL,
[Voucher_amt] [decimal](18, 2) NULL,
[DateStatusStart] [date] NULL,
[DateStatusEnd] [date] NULL
)
--drop table #HDimVouchers
insert #HDimVouchers
values
(10,2,10.00,'2019-01-01','2019-02-15'),
(10,4,10.00,'2019-02-16',null),
(13,4,10.00,'2019-01-10',null),
(11,2,15.00,'2019-01-01',null),
(12,2,20.00,'2019-03-12','2019-03-12'),
(12,4,20.00,'2019-03-13',null),
(15,2,205.00,'2019-05-25','2020-04-24'),
(15,6,205.00,'2020-04-25',null),
(21,2,100.00,'2019-02-16',null)
I would like to get a summary to total value by year-month by voucherstatuskey something like the below:
[Year-Month]
[VoucherStatusKey]
[Amount]
201901
2
25
201901
4
10
201902
2
100
201902
4
10
201903
4
20
201905
2
205
201906
2
205
201907
2
205
201908
2
205
201909
2
205
201910
2
205
201911
2
205
201912
2
205
202001
2
205
202002
2
205
202003
2
205
I have had many attempts to get the data as above, but I am struggling to get the correct format and values. Below is something I have tried
SELECT convert(nvarchar(4),Year([DateStatusStart])) + RIGHT('00' + CONVERT(NVARCHAR(2), DATEPART(Month, [DateStatusStart])), 2)
,[VoucherStatusKey]
,SUM([Voucher_amt]) OVER (PARTITION BY Year([DateStatusStart]),Month([DateStatusStart]), [VoucherStatusKey] ORDER BY [DateStatusStart]) AS running_total
FROM #HDimVouchers where [DateStatusStart] < '2020-03-31';
Let me assume that you want the value at the end of the month. Then, you can take the following approach:
Generate all appropriate months for each voucher.
Use a join to bring in the appropriate value.
For the first part, you could use a tally or calendar table if one is available. However a recursive CTE is also convenient:
with vdates as (
select voucher_id, eomonth(min(DateStatusStart)) as eom
from HDimVouchers
group by voucher_id
union all
select voucher_id, eomonth(dateadd(month, 1, eom))
from vdates
where eom < '2020-03-01'
)
select vd.*, hv.Voucher_amt
from vdates vd join
HDimVouchers hv
on hv.voucher_id = vd.voucher_id and
vd.eom >= hv.DateStatusStart and
(vd.eom <= hv.DateStatusEnd or hv.DateStatusEnd is null)
order by vd.eom, vd.voucher_id;
Here is a db<>fiddle.
My take on this would be:
;with [dates] as (
select YEAR(MIN([DateStatusStart]))*100+MONTH(MIN([DateStatusStart])) [YM] from #HDimVouchers
union all
select case when ([dates].[YM] % 100) = 12 then [dates].[YM] + 100 - 11 else [dates].[YM] + 1 end from [dates] where [YM] < 202112
), [dimkeys] as (
select
[Voucher_id],
YEAR(MIN([DateStatusStart]))*100+MONTH(MIN([DateStatusStart])) [DateStatusStart],
YEAR(MAX(ISNULL([DateStatusEnd], DATEFROMPARTS(2999, 12, 31))))*100+MONTH(MAX(ISNULL([DateStatusEnd], DATEFROMPARTS(2999, 12, 31)))) [DateStatusEnd]
from [#HDimVouchers] group by [Voucher_id]
), [map] as (
select
[dimkeys].[Voucher_id],
[dates].[YM],
COALESCE(
MAX([d].[DateStatusStart]),
(select MAX([i].[DateStatusStart]) from [#HDimVouchers] [i] where [i].[Voucher_id] = [dimkeys].[Voucher_id] and YEAR([i].[DateStatusStart])*100+MONTH([i].[DateStatusStart]) < [dates].[YM]),
(select MIN([i].[DateStatusStart]) from [#HDimVouchers] [i] where [i].[Voucher_id] = [dimkeys].[Voucher_id])
) [MappingDate]
from [dates]
cross join [dimkeys]
left join [#HDimVouchers] [d] on [d].[Voucher_id] = [dimkeys].[Voucher_id] and YEAR([d].[DateStatusStart])*100+MONTH([d].[DateStatusStart]) = [dates].[YM]
where [dates].[YM] >= [dimkeys].[DateStatusStart] and [dates].[YM] <= [dimkeys].[DateStatusEnd]
group by [dimkeys].[Voucher_id], [dates].[YM]
)
select [map].[YM], [fact].[VoucherStatusKey], SUM([fact].[Voucher_amt]) [Sum]
from [map] join [#HDimVouchers] [fact] on [fact].[Voucher_id] = [map].[Voucher_id] and [fact].[DateStatusStart] = [map].[MappingDate]
group by [map].[YM], [fact].[VoucherStatusKey]
order by [YM], [VoucherStatusKey];
So:
Get all year-month values from start to end
Get all distinct keys with their overall min/max dates (aka when the member exists)
cross join them to get an entry of every key for every yearmonth (within lifetime of member)
add the date which should be used for mapping (this is used to decide to which month to add a member that was changed in a year-month)
only then join this up with the full dimension and group by the SCD Type 2 attribute
Update
For big tables, you can split it up in multiple temp. tables instead of going all out on CTEs. That usually helps a lot on performance.
select *,
YEAR([DateStatusStart])*100+MONTH([DateStatusStart]) [YmStart],
YEAR([DateStatusEnd])*100+MONTH([DateStatusEnd]) [YmEnd]
into [#withYm]
from [#HDimVouchers];
;with [dates] as (
select MIN([YmStart]) [YM] from [#withYm]
union all
select case when ([dates].[YM] % 100) = 12 then [dates].[YM] + 100 - 11 else [dates].[YM] + 1 end from [dates] where [YM] < 202112
), [dimkeys] as (
select
[Voucher_id],
MIN([YmStart]) [YmStart],
MAX(ISNULL([YmEnd], 299912)) [YmEnd]
from [#withYm]
group by [Voucher_id]
)
select
[dimkeys].[Voucher_id],
[dates].[YM]
into [#all]
from [dates]
cross join [dimkeys]
where [dates].[YM] >= [dimkeys].[YmStart] and [dates].[YM] <= [dimkeys].[YmEnd]
;with [map] as (
select
[#all].[Voucher_id],
[#all].[YM],
ISNULL(
MAX([d].[DateStatusStart]),
(select MAX([i].[DateStatusStart]) from [#withYm] [i] where [i].[Voucher_id] = [#all].[Voucher_id] and [i].[YmStart] < [#all].[YM])
) [MappingDate]
from [#all]
left join [#HDimVouchers] [d] on [d].[Voucher_id] = [#all].[Voucher_id] and YEAR([d].[DateStatusStart])*100+MONTH([d].[DateStatusStart]) = [#all].[YM]
group by [#all].[Voucher_id], [#all].[YM]
)
select [map].[YM], [fact].[VoucherStatusKey], SUM([fact].[Voucher_amt]) [Sum]
from [map] join [#HDimVouchers] [fact] on [fact].[Voucher_id] = [map].[Voucher_id] and [fact].[DateStatusStart] = [map].[MappingDate]
group by [map].[YM], [fact].[VoucherStatusKey]
order by [YM], [VoucherStatusKey];
I have a subquery which is used for an Oracle database, but I want to use an equivalent query for a SQL Server database.
I didn't figure out how to migrate the TO_TIMESTAMP(TO_CHAR(TO_DATE part and also didn't know how to handle the thing with rownums in T-SQL.
Is it even possible to migrate this query?
SELECT 0 run_id,
0 tran_id,
0 sort_id,
' ' tran_type,
10 prod_id,
72 type_id,
1 value,
TO_TIMESTAMP(TO_CHAR(TO_DATE('2016-03-18 00:00:00', 'YYYY.MM.DD HH24:MI:SS') + rownum -1, 'YYYY.MM.DD') || to_char(sw.end_time, 'HH24:MI:SS'), 'YYYY.MM.DD HH24:MI:SS') event_publication,
EXTRACT (YEAR
FROM (TO_DATE('2016-03-18 00:00:00', 'YYYY.MM.DD HH24:MI:SS') + rownum -1)) y,
EXTRACT (MONTH
FROM (TO_DATE('2016-03-18 00:00:00', 'YYYY.MM.DD HH24:MI:SS') + rownum -1)) mo,
EXTRACT (DAY
FROM (TO_DATE('2016-03-18 00:00:00', 'YYYY.MM.DD HH24:MI:SS') + rownum -1)) d,
to_number(to_char (sw.end_time, 'HH24')) h,
to_number(to_char (sw.end_time, 'MI')) mi,
to_number(to_char (sw.end_time, 'SS')) s,
0 ms
FROM all_objects ao,
settlement_win sw,
prod_def pd
WHERE pd.prod_id = 10
AND sw.country = pd.country
AND sw.commodity = pd.commodity
AND rownum <= TO_DATE('2016-03-18 23:59:00', 'YYYY.MM.DD HH24:MI:SS') -TO_DATE('2016-03-18 00:00:00', 'YYYY.MM.DD HH24:MI:SS')+1
The first thing to address is the use of rownum which has no direct equivalent in TSQL but we can mimic it, and for this particular query you need to recognize that the table ALL_OBJECTS is only being used to produce a number of rows. It has no other purpose to the query.
In TSQL we can generate rows using a CTE and there are many many variants of this, but for here I suggest:
;WITH
cteDigits AS (
SELECT 0 AS digit UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL
SELECT 5 UNION ALL SELECT 6 UNION ALL SELECT 7 UNION ALL SELECT 8 UNION ALL SELECT 9
)
, cteTally AS (
SELECT
d1s.digit
+ d10s.digit * 10
+ d100s.digit * 100 /* add more like this as needed */
-- + d1000s.digit * 1000 /* add more like this as needed */
+ 1 AS rownum
FROM cteDigits d1s
CROSS JOIN cteDigits d10s
CROSS JOIN cteDigits d100s /* add more like this as needed */
--CROSS JOIN cteDigits d1000s /* add more like this as needed */
)
This will quickly spin-up 1000 rows as is and can be extended to produce many more rows by adding more cross joins. Note this returns a column called rownum which starts at 1 thus mimicking the Oracle rownum.
So next you can just add some of the remaining query, like this:
SELECT
0 run_id
, 0 tran_id
, 0 sort_id
, ' ' tran_type
, 10 prod_id
, 72 type_id
, 1 value
, convert(varchar, dateadd(day, rownum - 1,'20160318'),121) event_publication
-- several missing rows here
, 0 ms
FOM cteTally
INNER JOIN settlement_win sw
INNER JOIN prod_def pd ON sw.country = pd.country AND sw.commodity = pd.commodity
WHERE pd.prod_id = 10
AND rownum <= datediff(day,'20160318','20160318') + 1
Note that you really do not need a to_timestamp() equivalent you just need the ability to output date and time to the maximum precision of your data which appears to be to the level of seconds.
To progress further (I think) requires an understanding of the data held in the column sw.end_time. If this can be converted to the mssql datetime data type then it is just a matter of adding a number of days to that value to arrive at the event_publication and similarly if sw.end_time is converted to a datetime data type then use date_part() to get the hours, minutes and seconds from that column. e.g.
, DATEADD(day,rownum-1,CONVERT(datetime, sw.end_time)) AS event_publication
also, if such a calculation works then it would be possible to use an apply operator to simplify the overall query, something like this
;WITH
cteDigits AS (
SELECT 0 AS digit UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL
SELECT 5 UNION ALL SELECT 6 UNION ALL SELECT 7 UNION ALL SELECT 8 UNION ALL SELECT 9
)
, cteTally AS (
SELECT
d1s.digit
+ d10s.digit * 10
+ d100s.digit * 100 /* add more like this as needed */
-- + d1000s.digit * 1000 /* add more like this as needed */
+ 1 AS rownum
FROM cteDigits d1s
CROSS JOIN cteDigits d10s
CROSS JOIN cteDigits d100s /* add more like this as needed */
--CROSS JOIN cteDigits d1000s /* add more like this as needed */
)
SELECT
0 run_id
, 0 tran_id
, 0 sort_id
, ' ' tran_type
, 10 prod_id
, 72 type_id
, 1 value
, convert(varchar(23), CA.Event_publication, 121) Event_publication
, datepart(day,CA.Event_publication) dd
, datepart(month,CA.Event_publication) mm
, datepart(year,CA.Event_publication) yyyy
, datepart(hour,CA.Event_publication) hh24
, datepart(minute,CA.Event_publication) mi
, datepart(second,CA.Event_publication) ss
, 0 ms
FOM cteTally
INNER JOIN settlement_win sw
INNER JOIN prod_def pd ON sw.country = pd.country AND sw.commodity = pd.commodity
CROSS APPLY (
SELECT DATEADD(day,rownum-1,CONVERT(datetime, sw.end_time)) AS event_publication ) CA
WHERE pd.prod_id = 10
AND rownum <= datediff(day,'20160318','20160318') + 1
NB: IT may be necessary to include this datediff(day,'19000101,'20160318') (which equals 42445) into the calculation of the event_date e.g.
SELECT DATEADD(day,42445 + (rownum-1),CONVERT(datetime, sw.end_time)) AS event_publication
One last point is that you could use datetime2 instead of datetime if you really do need a greater degree of time precision but there is no easily apparent requirement for that.
I want to get all times that an event is not taking place for each room. The start of the day is 9:00:00 and end is 22:00:00.
What my database looks like is this:
Event EventStart EventEnd Days Rooms DayStarts
CISC 3660 09:00:00 12:30:00 Monday 7-3 9/19/2014
MATH 2501 15:00:00 17:00:00 Monday:Wednesday 7-2 10/13/2014
CISC 1110 14:00:00 16:00:00 Monday 7-3 9/19/2014
I want to get the times that aren't in the database.
ex. For SelectedDate (9/19/2014) the table should return:
Room FreeTimeStart FreeTimeEnd
7-3 12:30:00 14:00:00
7-3 16:00:00 22:00:00
ex2. SelectedDate (10/13/2014):
Room FreeTimeStart FreeTimeEnd
7-2 9:00:00 15:00:00
7-2 17:00:00 22:00:00
What I have tried is something like this:
select * from Events where ________ NOT BETWEEN eventstart AND eventend;
But I do not know what to put in the place of the space.
This was a pretty complex request. SQL works best with sets, and not looking at line by line. Here is what I came up with. To make it easier to figure out, I wrote it as a series of CTE's so I could work through the problem a step at a time. I am not saying that this is the best possible way to do it, but it doesn't require the use of any cursors. You need the Events table and a table of the room names (otherwise, you don't see a room that doesn't have any bookings).
Here is the query and I will explain the methodology.
DECLARE #Events TABLE (Event varchar(20), EventStart Time, EventEnd Time, Days varchar(50), Rooms varchar(10), DayStarts date)
INSERT INTO #Events
SELECT 'CISC 3660', '09:00:00', '12:30:00', 'Monday', '7-3', '9/19/2014' UNION
SELECT 'MATH 2501', '15:00:00', '17:00:00', 'Monday:Wednesday', '7-2', '10/13/2014' UNION
SELECT 'CISC 1110', '14:00:00', '16:00:00', 'Monday', '7-3', '9/19/2014'
DECLARE #Rooms TABLE (RoomName varchar(10))
INSERT INTO #Rooms
SELECT '7-2' UNION
SELECT '7-3'
DECLARE #SelectedDate date = '9/19/2014'
DECLARE #MinTimeInterval int = 30 --smallest time unit room can be reserved for
;WITH
D1(N) AS (
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1
),
D2(N) AS (SELECT 1 FROM D1 a, D1 b),
D4(N) AS (SELECT 1 FROM D2 a, D2 b),
Numbers AS (SELECT TOP 3600 ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) -1 AS Number FROM D4),
AllTimes AS
(SELECT CAST(DATEADD(n,Numbers.Number*#MinTimeInterval,'09:00:00') as time) AS m FROM Numbers
WHERE DATEADD(n,Numbers.Number*#MinTimeInterval,'09:00:00') <= '22:00:00'),
OccupiedTimes AS (
SELECT e.Rooms, ValidTimes.m
FROM #Events E
CROSS APPLY (SELECT m FROM AllTimes WHERE m BETWEEN CASE WHEN e.EventStart = '09:00:00' THEN e.EventStart ELSE DATEADD(n,1,e.EventStart) END and CASE WHEN e.EventEnd = '22:00:00' THEN e.EventEnd ELSE DATEADD(n,-1,e.EventEnd) END) ValidTimes
WHERE e.DayStarts = #SelectedDate
),
AllRoomsAllTimes AS (
SELECT * FROM #Rooms R CROSS JOIN AllTimes
), AllOpenTimes AS (
SELECT a.*, ROW_NUMBER() OVER( PARTITION BY (a.RoomName) ORDER BY a.m) AS pos
FROM AllRoomsAllTimes A
LEFT OUTER JOIN OccupiedTimes o ON a.RoomName = o.Rooms AND a.m = o.m
WHERE o.m IS NULL
), Finalize AS (
SELECT a1.RoomName,
CASE WHEN a3.m IS NULL OR DATEDIFF(n,a3.m, a1.m) > #MinTimeInterval THEN a1.m else NULL END AS FreeTimeStart,
CASE WHEN a2.m IS NULL OR DATEDIFF(n,a1.m,a2.m) > #MinTimeInterval THEN A1.m ELSE NULL END AS FreeTimeEnd,
ROW_NUMBER() OVER( ORDER BY a1.RoomName ) AS Pos
FROM AllOpenTimes A1
LEFT OUTER JOIN AllOpenTimes A2 ON a1.RoomName = a2.RoomName and a1.pos = a2.pos-1
LEFT OUTER JOIN AllOpenTimes A3 ON a1.RoomName = a3.RoomName and a1.pos = a3.pos+1
WHERE A2.m IS NULL OR DATEDIFF(n,a1.m,a2.m) > #MinTimeInterval
OR
A3.m IS NULL OR DATEDIFF(n,a3.m, a1.m) > #MinTimeInterval
)
SELECT F1.RoomName, f1.FreeTimeStart, f2.FreeTimeEnd FROM Finalize F1
LEFT OUTER JOIN Finalize F2 ON F1.Pos = F2.pos-1 AND f1.RoomName = f2.RoomName
WHERE f1.pos % 2 = 1
In the first several lines, I create temp variables to simulate your tables Events and Rooms.
The variable #MinTimeInterval determines what time interval the room schedules can be on (every 30 min, 15 min, etc - this number needs to divide evenly into 60).
Since SQL cannot query data that is missing, we need to create a table that holds all of the times that we want to check for. The first several lines in the WITH create a table called AllTimes which are all the possible time intervals in your day.
Next, we get a list of all of the times that are occupied (OccupiedTimes), and then LEFT OUTER JOIN this table to the AllTimes table which gives us all the available times. Since we only want the start and end of each free time, create the Finalize table which self joins each record to the previous and next record in the table. If the times in these rows are greater than #MinTimeInterval, then we know it is either a start or end of a free time.
Finally we self join this last table to put the start and end times in the same row and only look at every other row.
This will need to be adjusted if a single row in Events spans multiple days or multiple rooms.
Here's a solution that will return the "complete picture" including rooms that aren't booked at all for the day in question:
Declare #Date char(8) = '20141013'
;
WITH cte as
(
SELECT *
FROM -- use your table name instead of the VALUES construct
(VALUES
('09:00:00','12:30:00' ,'7-3', '20140919'),
('15:00:00','17:00:00' ,'7-2', '20141013'),
('14:00:00','16:00:00' ,'7-3', '20140919')) x(EventStart , EventEnd,Rooms, DayStarts)
), cte_Days_Rooms AS
-- get a cartesian product for the day specified and all rooms as well as the start and end time to compare against
(
SELECT y.EventStart,y.EventEnd, x.rooms,a.DayStarts FROM
(SELECT #Date DayStarts) a
CROSS JOIN
(SELECT DISTINCT Rooms FROM cte)x
CROSS JOIN
(SELECT '09:00:00' EventStart,'09:00:00' EventEnd UNION ALL
SELECT '22:00:00' EventStart,'22:00:00' EventEnd) y
), cte_1 AS
-- Merge the original data an the "base data"
(
SELECT * FROM cte WHERE DayStarts=#Date
UNION ALL
SELECT * FROM cte_Days_Rooms
), cte_2 as
-- use the ROW_NUMBER() approach to sort the data
(
SELECT *, ROW_NUMBER() OVER(PARTITION BY DayStarts, Rooms ORDER BY EventStart) as pos
FROM cte_1
)
-- final query: self join with an offest of one row, eliminating duplicate rows if a room is booked starting 9:00 or ending 22:00
SELECT c2a.DayStarts, c2a.Rooms , c2a.EventEnd, c2b.EventStart
FROM cte_2 c2a
INNER JOIN cte_2 c2b on c2a.DayStarts = c2b.DayStarts AND c2a.Rooms =c2b.Rooms AND c2a.pos = c2b.pos -1
WHERE c2a.EventEnd <> c2b.EventStart
ORDER BY c2a.DayStarts, c2a.Rooms
I have hospital patient admission data in Microsoft SQL Server r2 that looks something like this:
PatientID, AdmitDate, DischargeDate
Jones. 1-jan-13 01:37. 1-jan-13 17:45
Smith 1-jan-13 02:12. 2-jan-13 02:14
Brooks. 4-jan-13 13:54. 5-jan-13 06:14
I would like count the number of patients in the hospital day by day and hour by hour (ie at
1-jan-13 00:00. 0
1-jan-13 01:00. 0
1-jan-13 02:00. 1
1-jan-13 03:00. 2
And I need to include the hours when there are no patients admitted in the result.
I can't create tables so making a reference table listing all the hours and days is out, though.
Any suggestions?
To solve this problem, you need a list of date-hours. The following gets this from the admit date cross joined to a table with 24 hours. The table of 24 hours is calculating from information_schema.columns -- a trick for getting small sequences of numbers in SQL Server.
The rest is just a join between this table and the hours. This version counts the patients at the hour, so someone admitted and discharged in the same hour, for instance is not counted. And in general someone is not counted until the next hour after they are admitted:
with dh as (
select DATEADD(hour, seqnum - 1, thedatehour ) as DateHour
from (select distinct cast(cast(AdmitDate as DATE) as datetime) as thedatehour
from Admission a
) a cross join
(select ROW_NUMBER() over (order by (select NULL)) as seqnum
from INFORMATION_SCHEMA.COLUMNS
) hours
where hours <= 24
)
select dh.DateHour, COUNT(*) as NumPatients
from dh join
Admissions a
on dh.DateHour between a.AdmitDate and a.DischargeDate
group by dh.DateHour
order by 1
This also assumes that there are admissions on every day. That seems like a reasonable assumption. If not, a calendar table would be a big help.
Here is one (ugly) way:
;WITH DayHours AS
(
SELECT 0 DayHour
UNION ALL
SELECT DayHour+1
FROM DayHours
WHERE DayHour+1 <= 23
)
SELECT B.AdmitDate, A.DayHour, COUNT(DISTINCT PatientID) Patients
FROM DayHours A
CROSS JOIN (SELECT DISTINCT CONVERT(DATE,AdmitDate) AdmitDate
FROM YourTable) B
LEFT JOIN YourTable C
ON B.AdmitDate = CONVERT(DATE,C.AdmitDate)
AND A.DayHour = DATEPART(HOUR,C.AdmitDate)
GROUP BY B.AdmitDate, A.DayHour
This is a bit messy and includes a temp table with the test data you provided but
CREATE TABLE #HospitalPatientData (PatientId NVARCHAR(MAX), AdmitDate DATETIME, DischargeDate DATETIME)
INSERT INTO #HospitalPatientData
SELECT 'Jones.', '1-jan-13 01:37:00.000', '1-jan-13 17:45:00.000' UNION
SELECT 'Smith', '1-jan-13 02:12:00.000', '2-jan-13 02:14:00.000' UNION
SELECT 'Brooks.', '4-jan-13 13:54:00.000', '5-jan-13 06:14:00.000'
;WITH DayHours AS
(
SELECT 0 DayHour
UNION ALL
SELECT DayHour+1
FROM DayHours
WHERE DayHour+1 <= 23
),
HospitalPatientData AS
(
SELECT CONVERT(nvarchar(max),AdmitDate,103) as AdmitDate ,DATEPART(hour,(AdmitDate)) as AdmitHour, COUNT(PatientID) as CountOfPatients
FROM #HospitalPatientData
GROUP BY CONVERT(nvarchar(max),AdmitDate,103), DATEPART(hour,(AdmitDate))
),
Results AS
(
SELECT MAX(h.AdmitDate) as Date, d.DayHour
FROM HospitalPatientData h
INNER JOIN DayHours d ON d.DayHour=d.DayHour
GROUP BY AdmitDate, CountOfPatients, DayHour
)
SELECT r.*, COUNT(h.PatientId) as CountOfPatients
FROM Results r
LEFT JOIN #HospitalPatientData h ON CONVERT(nvarchar(max),AdmitDate,103)=r.Date AND DATEPART(HOUR,h.AdmitDate)=r.DayHour
GROUP BY r.Date, r.DayHour
ORDER BY r.Date, r.DayHour
DROP TABLE #HospitalPatientData
This may get you started:
BEGIN TRAN
DECLARE #pt TABLE
(
PatientID VARCHAR(10)
, AdmitDate DATETIME
, DischargeDate DATETIME
)
INSERT INTO #pt
( PatientID, AdmitDate, DischargeDate )
VALUES ( 'Jones', '1-jan-13 01:37', '1-jan-13 17:45' ),
( 'Smith', '1-jan-13 02:12', '2-jan-13 02:14' )
, ( 'Brooks', '4-jan-13 13:54', '5-jan-13 06:14' )
DECLARE #StartDate DATETIME = '20130101'
, #FutureDays INT = 7
;
WITH dy
AS ( SELECT TOP (#FutureDays)
ROW_NUMBER() OVER ( ORDER BY name ) dy
FROM sys.columns c
) ,
hr
AS ( SELECT TOP 24
ROW_NUMBER() OVER ( ORDER BY name ) hr
FROM sys.columns c
)
SELECT refDate, COUNT(p.PatientID) AS PtCount
FROM ( SELECT DATEADD(HOUR, hr.hr - 1,
DATEADD(DAY, dy.dy - 1, #StartDate)) AS refDate
FROM dy
CROSS JOIN hr
) ref
LEFT JOIN #pt p ON ref.refDate BETWEEN p.AdmitDate AND p.DischargeDate
GROUP BY refDate
ORDER BY refDate
ROLLBACK
How do you create a moving average in SQL?
Current table:
Date Clicks
2012-05-01 2,230
2012-05-02 3,150
2012-05-03 5,520
2012-05-04 1,330
2012-05-05 2,260
2012-05-06 3,540
2012-05-07 2,330
Desired table or output:
Date Clicks 3 day Moving Average
2012-05-01 2,230
2012-05-02 3,150
2012-05-03 5,520 4,360
2012-05-04 1,330 3,330
2012-05-05 2,260 3,120
2012-05-06 3,540 3,320
2012-05-07 2,330 3,010
This is an Evergreen Joe Celko question.
I ignore which DBMS platform is used. But in any case Joe was able to answer more than 10 years ago with standard SQL.
Joe Celko SQL Puzzles and Answers citation:
"That last update attempt suggests that we could use the predicate to
construct a query that would give us a moving average:"
SELECT S1.sample_time, AVG(S2.load) AS avg_prev_hour_load
FROM Samples AS S1, Samples AS S2
WHERE S2.sample_time
BETWEEN (S1.sample_time - INTERVAL 1 HOUR)
AND S1.sample_time
GROUP BY S1.sample_time;
Is the extra column or the query approach better? The query is
technically better because the UPDATE approach will denormalize the
database. However, if the historical data being recorded is not going
to change and computing the moving average is expensive, you might
consider using the column approach.
MS SQL Example:
CREATE TABLE #TestDW
( Date1 datetime,
LoadValue Numeric(13,6)
);
INSERT INTO #TestDW VALUES('2012-06-09' , '3.540' );
INSERT INTO #TestDW VALUES('2012-06-08' , '2.260' );
INSERT INTO #TestDW VALUES('2012-06-07' , '1.330' );
INSERT INTO #TestDW VALUES('2012-06-06' , '5.520' );
INSERT INTO #TestDW VALUES('2012-06-05' , '3.150' );
INSERT INTO #TestDW VALUES('2012-06-04' , '2.230' );
SQL Puzzle query:
SELECT S1.date1, AVG(S2.LoadValue) AS avg_prev_3_days
FROM #TestDW AS S1, #TestDW AS S2
WHERE S2.date1
BETWEEN DATEADD(d, -2, S1.date1 )
AND S1.date1
GROUP BY S1.date1
order by 1;
One way to do this is to join on the same table a few times.
select
(Current.Clicks
+ isnull(P1.Clicks, 0)
+ isnull(P2.Clicks, 0)
+ isnull(P3.Clicks, 0)) / 4 as MovingAvg3
from
MyTable as Current
left join MyTable as P1 on P1.Date = DateAdd(day, -1, Current.Date)
left join MyTable as P2 on P2.Date = DateAdd(day, -2, Current.Date)
left join MyTable as P3 on P3.Date = DateAdd(day, -3, Current.Date)
Adjust the DateAdd component of the ON-Clauses to match whether you want your moving average to be strictly from the past-through-now or days-ago through days-ahead.
This works nicely for situations where you need a moving average over only a few data points.
This is not an optimal solution for moving averages with more than a few data points.
select t2.date, round(sum(ct.clicks)/3) as avg_clicks
from
(select date from clickstable) as t2,
(select date, clicks from clickstable) as ct
where datediff(t2.date, ct.date) between 0 and 2
group by t2.date
Example here.
Obviously you can change the interval to whatever you need. You could also use count() instead of a magic number to make it easier to change, but that will also slow it down.
General template for rolling averages that scales well for large data sets
WITH moving_avg AS (
SELECT 0 AS [lag] UNION ALL
SELECT 1 AS [lag] UNION ALL
SELECT 2 AS [lag] UNION ALL
SELECT 3 AS [lag] --ETC
)
SELECT
DATEADD(day,[lag],[date]) AS [reference_date],
[otherkey1],[otherkey2],[otherkey3],
AVG([value1]) AS [avg_value1],
AVG([value2]) AS [avg_value2]
FROM [data_table]
CROSS JOIN moving_avg
GROUP BY [otherkey1],[otherkey2],[otherkey3],DATEADD(day,[lag],[date])
ORDER BY [otherkey1],[otherkey2],[otherkey3],[reference_date];
And for weighted rolling averages:
WITH weighted_avg AS (
SELECT 0 AS [lag], 1.0 AS [weight] UNION ALL
SELECT 1 AS [lag], 0.6 AS [weight] UNION ALL
SELECT 2 AS [lag], 0.3 AS [weight] UNION ALL
SELECT 3 AS [lag], 0.1 AS [weight] --ETC
)
SELECT
DATEADD(day,[lag],[date]) AS [reference_date],
[otherkey1],[otherkey2],[otherkey3],
AVG([value1] * [weight]) / AVG([weight]) AS [wavg_value1],
AVG([value2] * [weight]) / AVG([weight]) AS [wavg_value2]
FROM [data_table]
CROSS JOIN weighted_avg
GROUP BY [otherkey1],[otherkey2],[otherkey3],DATEADD(day,[lag],[date])
ORDER BY [otherkey1],[otherkey2],[otherkey3],[reference_date];
select *
, (select avg(c2.clicks) from #clicks_table c2
where c2.date between dateadd(dd, -2, c1.date) and c1.date) mov_avg
from #clicks_table c1
Use a different join predicate:
SELECT current.date
,avg(periods.clicks)
FROM current left outer join current as periods
ON current.date BETWEEN dateadd(d,-2, periods.date) AND periods.date
GROUP BY current.date HAVING COUNT(*) >= 3
The having statement will prevent any dates without at least N values from being returned.
assume x is the value to be averaged and xDate is the date value:
SELECT avg(x) from myTable WHERE xDate BETWEEN dateadd(d, -2, xDate) and xDate
In hive, maybe you could try
select date, clicks, avg(clicks) over (order by date rows between 2 preceding and current row) as moving_avg from clicktable;
For the purpose, I'd like to create an auxiliary/dimensional date table like
create table date_dim(date date, date_1 date, dates_2 date, dates_3 dates ...)
while date is the key, date_1 for this day, date_2 contains this day and the day before; date_3...
Then you can do the equal join in hive.
Using a view like:
select date, date from date_dim
union all
select date, date_add(date, -1) from date_dim
union all
select date, date_add(date, -2) from date_dim
union all
select date, date_add(date, -3) from date_dim
NOTE: THIS IS NOT AN ANSWER but an enhanced code sample of Diego Scaravaggi's answer. I am posting it as answer as the comment section is insufficient. Note that I have parameter-ized the period for Moving aveage.
declare #p int = 3
declare #t table(d int, bal float)
insert into #t values
(1,94),
(2,99),
(3,76),
(4,74),
(5,48),
(6,55),
(7,90),
(8,77),
(9,16),
(10,19),
(11,66),
(12,47)
select a.d, avg(b.bal)
from
#t a
left join #t b on b.d between a.d-(#p-1) and a.d
group by a.d
--#p1 is period of moving average, #01 is offset
declare #p1 as int
declare #o1 as int
set #p1 = 5;
set #o1 = 3;
with np as(
select *, rank() over(partition by cmdty, tenor order by markdt) as r
from p_prices p1
where
1=1
)
, x1 as (
select s1.*, avg(s2.val) as avgval from np s1
inner join np s2
on s1.cmdty = s2.cmdty and s1.tenor = s2.tenor
and s2.r between s1.r - (#p1 - 1) - (#o1) and s1.r - (#o1)
group by s1.cmdty, s1.tenor, s1.markdt, s1.val, s1.r
)
I'm not sure that your expected result (output) shows classic "simple moving (rolling) average" for 3 days. Because, for example, the first triple of numbers by definition gives:
ThreeDaysMovingAverage = (2.230 + 3.150 + 5.520) / 3 = 3.6333333
but you expect 4.360 and it's confusing.
Nevertheless, I suggest the following solution, which uses window-function AVG. This approach is much more efficient (clear and less resource-intensive) than SELF-JOIN introduced in other answers (and I'm surprised that no one has given a better solution).
-- Oracle-SQL dialect
with
data_table as (
select date '2012-05-01' AS dt, 2.230 AS clicks from dual union all
select date '2012-05-02' AS dt, 3.150 AS clicks from dual union all
select date '2012-05-03' AS dt, 5.520 AS clicks from dual union all
select date '2012-05-04' AS dt, 1.330 AS clicks from dual union all
select date '2012-05-05' AS dt, 2.260 AS clicks from dual union all
select date '2012-05-06' AS dt, 3.540 AS clicks from dual union all
select date '2012-05-07' AS dt, 2.330 AS clicks from dual
),
param as (select 3 days from dual)
select
dt AS "Date",
clicks AS "Clicks",
case when rownum >= p.days then
avg(clicks) over (order by dt
rows between p.days - 1 preceding and current row)
end
AS "3 day Moving Average"
from data_table t, param p;
You see that AVG is wrapped with case when rownum >= p.days then to force NULLs in first rows, where "3 day Moving Average" is meaningless.
We can apply Joe Celko's "dirty" left outer join method (as cited above by Diego Scaravaggi) to answer the question as it was asked.
declare #ClicksTable table ([Date] date, Clicks int)
insert into #ClicksTable
select '2012-05-01', 2230 union all
select '2012-05-02', 3150 union all
select '2012-05-03', 5520 union all
select '2012-05-04', 1330 union all
select '2012-05-05', 2260 union all
select '2012-05-06', 3540 union all
select '2012-05-07', 2330
This query:
SELECT
T1.[Date],
T1.Clicks,
-- AVG ignores NULL values so we have to explicitly NULLify
-- the days when we don't have a full 3-day sample
CASE WHEN count(T2.[Date]) < 3 THEN NULL
ELSE AVG(T2.Clicks)
END AS [3-Day Moving Average]
FROM #ClicksTable T1
LEFT OUTER JOIN #ClicksTable T2
ON T2.[Date] BETWEEN DATEADD(d, -2, T1.[Date]) AND T1.[Date]
GROUP BY T1.[Date]
Generates the requested output:
Date Clicks 3-Day Moving Average
2012-05-01 2,230
2012-05-02 3,150
2012-05-03 5,520 4,360
2012-05-04 1,330 3,330
2012-05-05 2,260 3,120
2012-05-06 3,540 3,320
2012-05-07 2,330 3,010