Unsupervised Neural Network to Maximize a Function? - optimization

Suppose I have vectors of dimension 1 x N {X_1...X_n} and {X_1' ...X_n'} where each X and X' are related but the relation is not able to be modeled by a function. I want to train a neural network by feeding it X_i and outputting Y_i with dimension N x 1, such that norm((X_i')(Y_i)) is maximized. The constraint is that Y_i has a norm of 1 (otherwise I will just use as large numbers as possible in Y_i).
I do not use X_i' as the inputs because they are not available in real life. I hope that when I test the neural network by feeding it {X_n+1 ... X_k}, it will output {Y_n+1 ... Y_k} where norm((X_n+1')(Y_n+1)) are maximized. Again, note that I only have {X_n+1'...X_k'} when testing, but not in real life where the neural network will be used.
I tried defining custom tensorflow or keras loss functions, but they don't seem to work. Also I tried using a neural network to first predict X_i' from X_i, but the performance is not very good.
A difficulty in this is to define a loss function that has no labels, and make neural network do backprop using this loss function. Any ideas how this may be achieved?

Related

Can I apply inequality constraints to a DNN during training?

If I am trying to train a neural network to minimize some loss L, then we are finding the parameters that minimize that loss, given a set of training data.
What methods do we have of minimizing that loss subject to some inequality constraints?
Say the input is x, and the output is y(x,p)**, and the parameters are p. Is there a way to train it from the following statement?
argmin_p L
subject to
g(x,y(x,p)) < 0
I've googled around, and what I'm trying to do sounds pretty similar to NLP (just without an equality constraint) in that it's an inequality constrained minimization problem. I've found Tensorflow Constrained Optimization (TFCO), but I'm not seeing them train neural networks in any of the examples.

Is it possible to use Keras to optimize the coefficients of a mathematical function?

I'm very new to Keras a neural network in general. and I was wondering if I had a list of points (x,y) that came from a quadratic function that looks like this (ax^2+bx+c) is it possible
to feed the points into a neural network and
get the coefficients a,b and c as an output from the network?
I know that I can simply use polynomial regression to achieve my goal. that is not the point.
If you are asking how to do polynomial regression using neural networks, here's the recipe.
Your dataset consists of points (x, y). Design your network to be a fully connected network (dense network) with 1 input layer and 1 output layer. The input layer consists of 2 nodes, the output layer consists of 1 node. Then, give to your network the inputs x and x^2. The output will be computed as:
y = w * X + c
where w is a matrix of learnable parameters. Specifically, it has shape 1x2 since it contains parameters a and b. c is a bias. The input matrix X has shape 2xN, where N is the number of points in your dataset and for each point, the first component is x^2 and the second component is x.
As loss function, use the standard Mean Squared Error loss. As for the optimizer, a simple Stochastic Gradient Descent should work just fine. At convergence, w and c will be good enough to approximate the true quadratic function.
I don't know keras, but I think it will not tough figuring out by yourself how to implement this naive network.

diagnosis on training process of neural network

I am training an autoencoder DNN for a regression question. Need suggestions on how to improve the training process.
The total number of training sample is about ~100,000. I use Keras to fit the model, setting validation_split = 0.1. After training, I drew loss function change and got the following picture. As can be seen here, validation loss is unstable and mean values are very close to training loss.
My question is: based on this, what is the next step I should try to improve the training process?
[Edit on 1/26/2019]
The details of network architecture are as follows:
It has 1 latent layer of 50 nodes. The input and output layer have 1000 nodes,respectively. The activation of hidden layer is ReLU. Loss function is MSE. For optimizer, I use Adadelta with default parameter settings. I also tried to set lr=0.5, but got very similar results. Different features of the data have scaled between -10 and 10, with mean of 0.
By observing the graph provided, the network could not approximate the function which establishes a relation between the input and output.
If your features are too diverse. That one of them is large and others have a very small value, then you should normalize the feature vector. You can read more here.
For a better training and testing result, you can follow these tips,
Use a small network. A network with one hidden layer is enough.
Perform activations in the input as well as hidden layers. The output layer must have a linear function. Use ReLU activation function.
Prefer small learning rate like 0.001. Use RMSProp optimizer. It works fine on most regression problems.
If you are not using mean squared error function, use it.
Try slow and steady learning and not fast learning.

Approximating multidimensional functions with neural networks

Is it possible to fit or approximate multidimensional functions with neural networks?
Let's say I want to model the function f(x,y)=sin(x)+y from some given measurement data. (f(x,y) is considered as ground truth and is not known). Also if it's possible some code examples written in Tensorflow or Keras would be great.
As said by #AndreHolzner, theoretically you can approximate any continuous function with a neural network as well as you want, on any compact subset of R^n, even with only one hidden layer.
However, in practice, the neural net can have to be very large for some functions, and sometimes be untrainable (the optimal weights may be hard to find without getting in a local minimum). So here are a few practical suggestions (unfortunately vague, because the details depend too much on your data and are hard to predict without multiple tries):
Keep the network not too big (it'hard to define though, unfortunately): you'll just overfit. You'll probably need a LOT of training samples.
A big number of reasonably-sized layers is usually better than a reasonable number of big layers.
If you have some priors about the function, use them: for instance, if you believe there is some kind of periodicity in f (like in your example, but it could be more complicated), you could add the sin() function to some of of the outputs of the first layer (not all, that would give you a truly periodic output). If you suspect a polynom of degree n, just augment you input x with x², ...x^n and use a linear regression on that input, etc. It will be much easier than learning the weights.
The universal approximator theorem is true on any compact subset of R^n, not on the entire multidimensional space. In particular, you'll never be able to predict the value for an input that's way bigger than any of the training samples for instance (say you trained on numbers from 0 to 100, don't test on 200, it will fail).
For an example of regression you can look here for instance. To regress a more complicated function you'd need to put more complicated functions to get pred from x, for instance like this:
n_layers = 3
x = tf.placeholder(shape=[-1, n_dimensions], dtype=tf.float32)
last_layer = x
# Add n_layers dense hidden layers
for i in range(n_layers):
last_layer = tf.layers.dense(inputs=last_layer, units=128, activation=tf.nn.relu)
# Get the output prediction
pred = tf.layers.dense(inputs=last_layer, units=1, activation=None)
# Get the cost, training op, etc, just like in the linear regression example

When predicting with an LSTM in Keras, is the hidden state still adjusted?

When I first train an LSTM in Keras on sequence data - my training data -
and then use model.predict() to make predictions with my test data as input, is the hidden state of the LSTM still being adjusted?
Basic operation of a neural network is to take an input (vector) which is connected to the output with connections and, sometimes, other layers such as context layers. These connections are modelled as matrices and vary in strength, we call these weight matrices.
This means that the only thing we do when we are feeding data into the network is to put a vector into the network, multiply the values with the weight matrix and call that the output. In special cases, like recurrent networks, we even keep some values stored in other vectors and combine this stored value with the current input.
During training we not only feed data into the network, we also compute an error value that we evaluate in a clever way so that it tells us how we should change the weight matrices we multiply our inputs (and possibly past inputs for recurrent layers) with.
Therefore: yes, of course the basic execution behavior does not change for recurrent layers. We are just not updating weights anymore.
There are layers that do behave differently during execution time because they are treated as regularisers, i.e. methods that make training the network more efficient, which are deemed as unnecessary during execution. Examples for these layers are Noise and BatchNormalization. Almost all neural network layers (including recurrent ones) include drop-out which is another form of regularisation which disables a random percentage of connections in the layer. This is also only done during training.