conditional operation on pandas column - pandas

df1 =
name col1
a 1
b 2
c 3
d 4
df2 =
name col2
b 3
c 9
a 2
d 3
I want to compare names in both data-frames and multpily other two columns respectively. so the output would be like..
df3 =
name col_new
a 2
b 6
c 27
d 12

Use Series.map for correct ordering with multiple by Series.mul and for extract original col is used DataFrame.pop:
df1['col_new'] = df1.pop('col').mul(df1['name'].map(df2.set_index('name')['col']))
For new DataFrame is uses DataFrame.assign:
df3 = df1.assign('col_new' = df1.pop('col').mul(df1['name'].map(df2.set_index('name')['col'])))
Or another solution with DataFrame.merge and left join:
df3 = df1.merge(df2, on='name', how='left')
df3['col_new'] = df3.pop('col_x').mul(df3.pop('col_y'))

Related

Multimatch join in pandas

I am looking for joining two data frame on one column and if there is a multi match then append the results to another column.
NB. using a different example as yours is not reproducible.
You can convert to str.lower, then explode and map the values to groupby.agg again as string:
mapper = df2.set_index('name')['ID'].astype(str)
df1['ID'] = (df1['name']
.str.upper().str.split(',')
.explode()
.map(mapper)
.groupby(level=0).agg(','.join)
)
Or, with a list comprehension:
mapper = df2.set_index('name')['ID'].astype(str)
df1['ID'] = [','.join([mapper[x] for x in s.split(',') if x in mapper])
for s in df1['name']]
output:
name ID
0 A 1
1 b 2
2 A,B 1,2
3 C,a 3,1
4 D 4
Used input:
# df1
name
0 A
1 b
2 A,B
3 C,a
4 D
# df2
name ID
0 A 1
1 B 2
2 C 3
3 D 4

How do I subset the columns of a dataframe based on the index of another dataframe?

The rows of clin.index (row length = 81) is a subset of the columns of common_mrna (col length = 151). I want to keep the columns of common_mrna only if the column names match to the row values of clin dataframe.
My code failed to reduce the number of columns in common_mrna to 81.
import pandas as pd
common_mrna = common_mrna.set_index("Hugo_Symbol")
mrna_val = {}
for colnames, val in common_mrna.iteritems():
for i, rows in clin.iterrows():
if [[common_mrna.columns == i] == "TRUE"]:
mrna_val = np.append(mrna_val, val)
mrna = np.concatenate(mrna_val, axis=0)
common_mrna
Hugo_Symbol
A
B
C
D
First
1
2
3
4
Second
5
row
6
7
clin
Another header
A
20
D
30
desired output
Hugo_Symbol
A
D
First
1
4
Second
5
7
Try this using reindex:
common_mrna.reindex(clin.index, axis=1)
Output:
A D
First 1 4
Second 5 7
Update, IIUC:
common_mrna.set_index('Hugo_Symbol').reindex(clin.index, axis=1).reset_index()
IUUC, you can select the rows of A header in clin found in common_mrna columns and add the first column of common_mrna
cols = clin.loc[clin.index.isin(common_mrna.columns)].index.tolist()
# or with set
cols = list(sorted(set(clin.index.tolist()) & set(common_mrna.columns), key=common_mrna.columns.tolist().index))
out = common_mrna[['Hugo_Symbol'] + cols]
print(out)
Hugo_Symbol A D
0 First 1 4
1 Second 5 7

How to make pandas work for cross multiplication

I have 3 data frame:
df1
id,k,a,b,c
1,2,1,5,1
2,3,0,1,0
3,6,1,1,0
4,1,0,5,0
5,1,1,5,0
df2
name,a,b,c
p,4,6,8
q,1,2,3
df3
type,w_ave,vac,yak
n,3,5,6
v,2,1,4
from the multiplication, using pandas and numpy, I want to the output in df1:
id,k,a,b,c,w_ave,vac,yak
1,2,1,5,1,16,15,18
2,3,0,1,0,0,3,6
3,6,1,1,0,5,4,7
4,1,0,5,0,0,11,14
5,1,1,5,0,13,12,15
the conditions are:
The value of the new column will be =
#its not a code
df1["w_ave"][1] = df3["w_ave"]["v"]+ df1["a"][1]*df2["a"]["q"]+df1["b"][1]*df2["b"]["q"]+df1["c"][1]*df2["c"]["q"]
for output["w_ave"][1]= 2 +(1*1)+(5*2)+(1*3)
df3["w_ave"]["v"]=2
df1["a"][1]=1, df2["a"]["q"]=1 ;
df1["b"][1]=5, df2["b"]["q"]=2 ;
df1["c"][1]=1, df2["c"]["q"]=3 ;
Which means:
- a new column will be added in df1, from the name of the column from df3.
- for each row of the df1, the value of a, b, c will be multiplied with the same-named q value from df2. and summed together with the corresponding value of df3.
-the column name of df1 , matched will column name of df2 will be multiplied. The other not matched column will not be multiplied, like df1[k].
- However, if there is any 0 in df1["a"], the corresponding output will be zero.
I am struggling with this. It was tough to explain also. My attempts are very silly. I know this attempt will not work. However, I have added this:
import pandas as pd, numpy as np
data1 = "Sample_data1.csv"
data2 = "Sample_data2.csv"
data3 = "Sample_data3.csv"
folder = '~Sample_data/'
df1 =pd.read_csv(folder + data1)
df2 =pd.read_csv(folder + data2)
df3 =pd.read_csv(folder + data3)
df1= df2 * df1
Ok, so this will in no way resemble your desired output, but vectorizing the formula you provided:
df2=df2.set_index("name")
df3=df3.set_index("type")
df1["w_ave"] = df3.loc["v", "w_ave"]+ df1["a"].mul(df2.loc["q", "a"])+df1["b"].mul(df2.loc["q", "b"])+df1["c"].mul(df2.loc["q", "c"])
Outputs:
id k a b c w_ave
0 1 2 1 5 1 16
1 2 3 0 1 0 4
2 3 6 1 1 0 5
3 4 1 0 5 0 12
4 5 1 1 5 0 13

Pandas find columns with wildcard names

I have a pandas dataframe with column names like this:
id ColNameOrig_x ColNameOrig_y
There are many such columns, the 'x' and 'y' came about because 2 datasets with similar column names were merged.
What I need to do:
df.ColName = df.ColNameOrig_x + df.ColNameOrig_y
I am now manually repeating this line for many cols(close to 50), is there a wildcard way of doing this?
You can use DataFrame.filter with DataFrame.groupby by lambda function and axis=1 for grouping per columns names with aggregate sum or use text functions like Series.str.split with indexing:
df1 = df.filter(like='_').groupby(lambda x: x.split('_')[0], axis=1).sum()
print (df1)
ColName1Orig ColName2Orig
0 3 7
1 11 15
df1 = df.filter(like='_').groupby(df.columns.str.split('_').str[0], axis=1).sum()
print (df1)
ColName1Orig ColName2Orig
0 3 7
1 11 15
df1 = df.filter(like='_').groupby(df.columns.str[:12], axis=1).sum()
print (df1)
ColName1Orig ColName2Orig
0 3 7
1 11 15
You can use the subscripting syntax to access column names dynamically:
col_groups = ['ColName1', 'ColName2']
for grp in col_groups:
df[grp] = df[f'{grp}Orig_x'] + df[f'{grp}Orig_y']
Or you can aggregate by column group. For example
df = pd.DataFrame([
[1,2,3,4],
[5,6,7,8]
], columns=['ColName1Orig_x', 'ColName1Orig_y', 'ColName2Orig_x', 'ColName2Orig_y'])
# Here's your opportunity to define the wildcard
col_groups = df.columns.str.extract('(.+)Orig_[x|y]')[0]
df.columns = [col_groups, df.columns]
df.groupby(level=0, axis=1).sum()
Input:
ColName1Orig_x ColName1Orig_y ColName2Orig_x ColName2Orig_y
1 2 3 4
5 6 7 8
Output:
ColName1 ColName2
3 7
11 15

Map column names if data is same in two dataframes

I have two pandas dataframes
df1 = A B C
1 2 3
2 3 4
3 4 5
df2 = X Y Z
1 2 3
2 3 4
3 4 5
I need to map based on data If data is same then map column namesenter code here
Output = col1 col2
A X
B Y
C Z
I cannot find any built-in function to support this, hence simply loop over all columns:
pairs = []
for col1 in df1.columns:
for col2 in df2.columns:
if df1[col1].equals(df2[col2]):
pairs.append((col1, col2))
output = pandas.DataFrame(pairs, columns=['col1', 'col2'])