Gradients are None for Custom Convolution Layer - tensorflow

I have implemented the Basic MNIST model with Custom convolution layer as shown below. The problem is that the Gradients are always 'None' for the Custom Layer and so the learning does not happens during back propagation, as the Grad has None values.
I have debugged the outputs of the layers during forward pass and they are OK.
Here is the sample code, for simplicity I have passed image of 'Ones' and have just returned the matrix from the custom layer.
I have tried my best but could make it work any help is very much appreciated in advance
following code is executable and raises the
warning
:tensorflow:Gradients do not exist for variables ['cnn/custom_conv2d/kernel:0', 'cnn/custom_conv2d/bias:0', 'cnn/custom_conv2d_1/kernel:0', 'cnn/custom_conv2d_1/bias:0', 'cnn/custom_conv2d_2/kernel:0', 'cnn/custom_conv2d_2/bias:0'] when minimizing the loss.
import numpy as np
import tensorflow as tf
from grpc.beta import interfaces
class CustomConv2D(tf.keras.layers.Conv2D):
def __init__(self, filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='glorot_uniform',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
__name__ = 'CustomConv2D',
**kwargs
):
super(CustomConv2D, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
**kwargs )
def call(self, input):
(unrolled_mat, filters, shape) = self.prepare(input)
#unrolled_mat=unrolled inputs
#filters=unrolled kernels of the lAYER
#convolution through unrolling
conv_result = tf.tensordot(unrolled_mat, filters, axes=1)
result=tf.convert_to_tensor(tf.reshape(conv_result, shape))
return result
def prepare(self, matrix):
batches,rows,cols,channels=matrix.shape
kernel_size = self.kernel_size[0]
unrolled_matrices=None
# start = timer()
for batch in range(batches):
unrolled_maps=None
for chanel in range(channels):
unrolled_map = self.unroll(batch, cols, kernel_size, matrix, rows,chanel)
if unrolled_maps is None:
unrolled_maps = unrolled_map
else:
unrolled_maps=np.append(unrolled_maps,unrolled_map,axis=1)
unrolled_maps = np.reshape(unrolled_maps,(-1,unrolled_maps.shape[0],unrolled_maps.shape[1]))
if unrolled_matrices is None:
unrolled_matrices = unrolled_maps
else:
unrolled_matrices = np.concatenate((unrolled_matrices, unrolled_maps))
kernels=self.get_weights()
kernels=np.reshape(kernels[0],(unrolled_matrices[0].shape[1],-1))
shp=(batches,rows-(kernel_size-1),cols-(kernel_size-1),self.filters)
matrix=unrolled_matrices
return (matrix, kernels, shp)
def unroll(self, batch, cols, kernel_size, matrix, rows, chanel):
# a=np.zeros((shape))
unrolled_feature_map = None
for x in range(0, rows - (kernel_size - 1)):
for y in range(0, (cols - (kernel_size - 1))):
temp_row = None # flattened kernal at single position
for k in range(kernel_size):
for l in range(kernel_size):
if temp_row is None:
temp_row = matrix[batch, x + k, y + l, chanel]
# print(matrix[batch, x + k, y + l])
else:
temp_row = np.append(temp_row, matrix[batch, x + k, y + l, chanel])
# print(matrix[batch, x + k, y + l])
if unrolled_feature_map is None:
unrolled_feature_map = np.reshape(temp_row,
(-1, kernel_size * kernel_size)) # first row of unrolled matrix added
else:
unrolled_feature_map = np.concatenate((unrolled_feature_map, np.reshape(temp_row,
(-1, kernel_size * kernel_size)))) # concatinate subsequent row to un_mat
unrolled_feature_map = np.reshape(unrolled_feature_map,( unrolled_feature_map.shape[0], unrolled_feature_map.shape[1]))
# print(unrolled_feature_map.shape)
matrix=unrolled_feature_map
return matrix
class CNN(tf.keras.Model):
def __init__(self):
super(CNN, self).__init__()
self.learning_rate = 0.001
self.momentum = 0.9
self.optimizer = tf.keras.optimizers.Adam(self.learning_rate, self.momentum)
self.conv1 = CustomConv2D(filters = 6, kernel_size= 3, activation = 'relu') ## valid means no padding
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=2) # default stride??-
self.conv2 = CustomConv2D(filters = 16, kernel_size = 3, activation = 'relu')
self.pool2 = tf.keras.layers.MaxPool2D(pool_size = 2)
self.conv3 = CustomConv2D(filters=120, kernel_size=3, activation='relu')
self.flatten = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(units=82,kernel_initializer='glorot_uniform')
self.fc2 = tf.keras.layers.Dense(units=10, activation = 'softmax',kernel_initializer='glorot_uniform')
def call(self, x):
x = self.conv1(x) # shap(32,26,26,6) all (6s 3s 6s 3s)
x = self.pool1(x) # shap(32,13,13,6) all (6s)
x = self.conv2(x) # shap(32,11,11,16) all(324s)
x = self.pool2(x) # shap(32,5,5,16)
x = self.conv3(x) # shap(32,3,3,120)all(46656)
x = self.flatten(x) # shap(32,1080)
x = self.fc1(x) # shap(32,82)
x = self.fc2(x) # shap(32,10)
return x
def feedForward(self, image, label):
accuracy_object = tf.metrics.Accuracy()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
with tf.GradientTape() as tape:
feedForwardCompuation = self(image, training=True)
self.loss_value = loss_object(label, feedForwardCompuation)
grads = tape.gradient(self.loss_value, self.variables)
self.optimizer.apply_gradients(zip(grads, self.variables))
accuracy = accuracy_object(tf.argmax(feedForwardCompuation, axis=1, output_type=tf.int32), label)
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train=x_train.astype('float32')
y_train = y_train.astype('float32')
image=x_train[0].reshape((1,28,28,1))
label=y_train[0]
cnn=CNN()
cnn.feedForward(image,label)
UPDATE: I am not using the builtin TF conv fucntion rather I am implementing my own custom convolution operation via Matrix unrolling method(unrolled map*unrolled filters). But the Tap.gradient returns "None" for the custom layers however when I use the builtin conv2d function of TF then it works fine!
I have Added the actual code of the operation
Snapshot of grads while debugging

Problem is that the Convolution Operation is not happening in the Class, CustomConv2D. Neither the call Method, nor the customConv Method is performing Convolution Operation, but it is just returning the Input, as it is.
Replacing the line, return self.customConv(matrix) in the call method of CustomConv2D Class with return super(tf.keras.layers.Conv2D, self).call(matrix) will perform the actual Convolutional Operation.
One more change is to invoke the call method of CNN class by including the line, _ = cnn(X_reshaped) before the line, cnn.feedForward(image,label)
By doing the above 2 changes, Gradients will be added.

Related

TypeError: Expected keras.losses.Loss, found function

I want to build a TFF model for speech recognition systems. For this, I use the CNN-GRU model architecture with a CTC loss function. but I got error when I wanted to build_federated_averaging_process and think it's about the ctc_loss function but I cant fix it.
part of my code is:
def CTCLoss(y_true, y_pred):
# Compute the training-time loss value
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")
loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
return loss
def create_compiled_keras_model():
"""Model similar to DeepSpeech2."""
# Model's input
input_spectrogram = layers.Input((None, fft_length // 2 + 1), name="input")
# Expand the dimension to use 2D CNN.
x = layers.Reshape((-1, fft_length // 2 + 1 , 1), name="expand_dim")(input_spectrogram)
# Convolution layer 1
x = layers.Conv2D(
filters=32,
kernel_size=[11, 41],
strides=[2, 2],
padding="same",
use_bias=False,
name="conv_1",
)(x)
x = layers.BatchNormalization(name="conv_1_bn")(x)
x = layers.ReLU(name="conv_1_relu")(x)
# Convolution layer 2
x = layers.Conv2D(
filters=32,
kernel_size=[11, 21],
strides=[1, 2],
padding="same",
use_bias=False,
name="conv_2",
)(x)
x = layers.BatchNormalization(name="conv_2_bn")(x)
x = layers.ReLU(name="conv_2_relu")(x)
# Reshape the resulted volume to feed the RNNs layers
x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)
# RNN layers
for i in range(1, 2 + 1):
recurrent = layers.GRU(
units=128,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
return_sequences=True,
reset_after=True,
name=f"gru_{i}",
)
x = layers.Bidirectional(
recurrent, name=f"bidirectional_{i}", merge_mode="concat"
)(x)
if i < 2:
x = layers.Dropout(rate=0.5)(x)
# Dense layer
x = layers.Dense(units=128 * 2, name="dense_1")(x)
x = layers.ReLU(name="dense_1_relu")(x)
x = layers.Dropout(rate=0.5)(x)
# Classification layer
output = layers.Dense(units= output_dim + 1, activation="softmax")(x)
# Model
model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
return model
def model_fn():
# We _must_ create a new model here, and _not_ capture it from an external
# scope. TFF will call this within different graph contexts.
keras_model = create_compiled_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=layers.Input((None, fft_length // 2 + 1)),
loss=CTCLoss)
and I got error in this step :
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda:keras.optimizers.Adam(learning_rate=1e-4))
TypeError: Expected keras.losses.Loss, found function.
how do I fix it?
class Customloss(tf.keras.losses.Loss):
def __init__(self):
super().__init__()
#tf.function
def CTCLoss(self, y_true, y_pred):
...#
return loss
try to use tf.keras.losses.Loss for custom loss in tff. It will work.

How to modify the Keras CycleGAN example code to run parallelly on GPUs using tf.strategy

Here is the example of CycleGAN from the Keras
CycleGAN Example Using Keras.
Here is my modified implementation to use multiple GPUs. To implement the custom training I have used a reference Custom training with tf.distribute.Strategy
I want an example of CycleGAN from the Keras to run fast using GPUs. As further I need to process and train a huge amount of data. As well as CycleGAN uses multiple loss functions train_step will return 4 types of losses, currently, I am just returning one for easier understanding. Still, the training on GPUs is dead slow. I am not able to find the reason behind this.
Am I using tf.distribute.Strategy wrongly?
"""
Title: CycleGAN
Author: [A_K_Nain](https://twitter.com/A_K_Nain)
Date created: 2020/08/12
Last modified: 2020/08/12
Description: Implementation of CycleGAN.
"""
"""
## CycleGAN
CycleGAN is a model that aims to solve the image-to-image translation
problem. The goal of the image-to-image translation problem is to learn the
mapping between an input image and an output image using a training set of
aligned image pairs. However, obtaining paired examples isn't always feasible.
CycleGAN tries to learn this mapping without requiring paired input-output images,
using cycle-consistent adversarial networks.
- [Paper](https://arxiv.org/pdf/1703.10593.pdf)
- [Original implementation](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
"""
"""
## Setup
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_addons as tfa
import tensorflow_datasets as tfds
tfds.disable_progress_bar()
autotune = tf.data.experimental.AUTOTUNE
# Create a MirroredStrategy.
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
"""
## Prepare the dataset
In this example, we will be using the
[horse to zebra](https://www.tensorflow.org/datasets/catalog/cycle_gan#cycle_ganhorse2zebra)
dataset.
"""
# Load the horse-zebra dataset using tensorflow-datasets.
dataset, _ = tfds.load("cycle_gan/horse2zebra", with_info=True, as_supervised=True)
train_horses, train_zebras = dataset["trainA"], dataset["trainB"]
test_horses, test_zebras = dataset["testA"], dataset["testB"]
# Define the standard image size.
orig_img_size = (286, 286)
# Size of the random crops to be used during training.
input_img_size = (256, 256, 3)
# Weights initializer for the layers.
kernel_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)
# Gamma initializer for instance normalization.
gamma_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)
buffer_size = 256
batch_size = 1
def normalize_img(img):
img = tf.cast(img, dtype=tf.float32)
# Map values in the range [-1, 1]
return (img / 127.5) - 1.0
def preprocess_train_image(img, label):
# Random flip
img = tf.image.random_flip_left_right(img)
# Resize to the original size first
img = tf.image.resize(img, [*orig_img_size])
# Random crop to 256X256
img = tf.image.random_crop(img, size=[*input_img_size])
# Normalize the pixel values in the range [-1, 1]
img = normalize_img(img)
return img
def preprocess_test_image(img, label):
# Only resizing and normalization for the test images.
img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
img = normalize_img(img)
return img
"""
## Create `Dataset` objects
"""
BATCH_SIZE_PER_REPLICA = batch_size
GLOBAL_BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
# Apply the preprocessing operations to the training data
train_horses = (
train_horses.map(preprocess_train_image, num_parallel_calls=autotune)
.cache()
.shuffle(buffer_size)
.batch(GLOBAL_BATCH_SIZE)
)
train_zebras = (
train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)
.cache()
.shuffle(buffer_size)
.batch(GLOBAL_BATCH_SIZE)
)
# Apply the preprocessing operations to the test data
test_horses = (
test_horses.map(preprocess_test_image, num_parallel_calls=autotune)
.cache()
.shuffle(buffer_size)
.batch(GLOBAL_BATCH_SIZE)
)
test_zebras = (
test_zebras.map(preprocess_test_image, num_parallel_calls=autotune)
.cache()
.shuffle(buffer_size)
.batch(GLOBAL_BATCH_SIZE)
)
# Visualize some samples
_, ax = plt.subplots(4, 2, figsize=(10, 15))
for i, samples in enumerate(zip(train_horses.take(4), train_zebras.take(4))):
horse = (((samples[0][0] * 127.5) + 127.5).numpy()).astype(np.uint8)
zebra = (((samples[1][0] * 127.5) + 127.5).numpy()).astype(np.uint8)
ax[i, 0].imshow(horse)
ax[i, 1].imshow(zebra)
plt.show()
plt.savefig('Visualize_Some_Samples')
plt.close()
# Building blocks used in the CycleGAN generators and discriminators
class ReflectionPadding2D(layers.Layer):
"""Implements Reflection Padding as a layer.
Args:
padding(tuple): Amount of padding for the
spatial dimensions.
Returns:
A padded tensor with the same type as the input tensor.
"""
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
super(ReflectionPadding2D, self).__init__(**kwargs)
def call(self, input_tensor, mask=None):
padding_width, padding_height = self.padding
padding_tensor = [
[0, 0],
[padding_height, padding_height],
[padding_width, padding_width],
[0, 0],
]
return tf.pad(input_tensor, padding_tensor, mode="REFLECT")
def residual_block(
x,
activation,
kernel_initializer=kernel_init,
kernel_size=(3, 3),
strides=(1, 1),
padding="valid",
gamma_initializer=gamma_init,
use_bias=False,
):
dim = x.shape[-1]
input_tensor = x
x = ReflectionPadding2D()(input_tensor)
x = layers.Conv2D(
dim,
kernel_size,
strides=strides,
kernel_initializer=kernel_initializer,
padding=padding,
use_bias=use_bias,
)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
x = activation(x)
x = ReflectionPadding2D()(x)
x = layers.Conv2D(
dim,
kernel_size,
strides=strides,
kernel_initializer=kernel_initializer,
padding=padding,
use_bias=use_bias,
)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
x = layers.add([input_tensor, x])
return x
def downsample(
x,
filters,
activation,
kernel_initializer=kernel_init,
kernel_size=(3, 3),
strides=(2, 2),
padding="same",
gamma_initializer=gamma_init,
use_bias=False,
):
x = layers.Conv2D(
filters,
kernel_size,
strides=strides,
kernel_initializer=kernel_initializer,
padding=padding,
use_bias=use_bias,
)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
if activation:
x = activation(x)
return x
def upsample(
x,
filters,
activation,
kernel_size=(3, 3),
strides=(2, 2),
padding="same",
kernel_initializer=kernel_init,
gamma_initializer=gamma_init,
use_bias=False,
):
x = layers.Conv2DTranspose(
filters,
kernel_size,
strides=strides,
padding=padding,
kernel_initializer=kernel_initializer,
use_bias=use_bias,
)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
if activation:
x = activation(x)
return x
def get_resnet_generator(
filters=64,
num_downsampling_blocks=2,
num_residual_blocks=9,
num_upsample_blocks=2,
gamma_initializer=gamma_init,
name=None,
):
img_input = layers.Input(shape=input_img_size, name=name + "_img_input")
x = ReflectionPadding2D(padding=(3, 3))(img_input)
x = layers.Conv2D(filters, (7, 7), kernel_initializer=kernel_init, use_bias=False)(
x
)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
x = layers.Activation("relu")(x)
# Downsampling
for _ in range(num_downsampling_blocks):
filters *= 2
x = downsample(x, filters=filters, activation=layers.Activation("relu"))
# Residual blocks
for _ in range(num_residual_blocks):
x = residual_block(x, activation=layers.Activation("relu"))
# Upsampling
for _ in range(num_upsample_blocks):
filters //= 2
x = upsample(x, filters, activation=layers.Activation("relu"))
# Final block
x = ReflectionPadding2D(padding=(3, 3))(x)
x = layers.Conv2D(3, (7, 7), padding="valid")(x)
x = layers.Activation("tanh")(x)
model = keras.models.Model(img_input, x, name=name)
return model
"""
## Build the discriminators
The discriminators implement the following architecture:
`C64->C128->C256->C512`
"""
def get_discriminator(
filters=64, kernel_initializer=kernel_init, num_downsampling=3, name=None
):
img_input = layers.Input(shape=input_img_size, name=name + "_img_input")
x = layers.Conv2D(
filters,
(4, 4),
strides=(2, 2),
padding="same",
kernel_initializer=kernel_initializer,
)(img_input)
x = layers.LeakyReLU(0.2)(x)
num_filters = filters
for num_downsample_block in range(3):
num_filters *= 2
if num_downsample_block < 2:
x = downsample(
x,
filters=num_filters,
activation=layers.LeakyReLU(0.2),
kernel_size=(4, 4),
strides=(2, 2),
)
else:
x = downsample(
x,
filters=num_filters,
activation=layers.LeakyReLU(0.2),
kernel_size=(4, 4),
strides=(1, 1),
)
x = layers.Conv2D(
1, (4, 4), strides=(1, 1), padding="same", kernel_initializer=kernel_initializer
)(x)
model = keras.models.Model(inputs=img_input, outputs=x, name=name)
return model
"""
## Build the CycleGAN model
"""
class CycleGan(keras.Model):
def __init__(
self,
generator_G,
generator_F,
discriminator_X,
discriminator_Y,
lambda_cycle=10.0,
lambda_identity=0.5,
):
super(CycleGan, self).__init__()
self.gen_G = generator_G
self.gen_F = generator_F
self.disc_X = discriminator_X
self.disc_Y = discriminator_Y
self.lambda_cycle = lambda_cycle
self.lambda_identity = lambda_identity
def compile(
self,
gen_G_optimizer,
gen_F_optimizer,
disc_X_optimizer,
disc_Y_optimizer,
gen_loss_fn,
disc_loss_fn,
cycle_loss_fn,
identity_loss_fn
):
super(CycleGan, self).compile()
self.gen_G_optimizer = gen_G_optimizer
self.gen_F_optimizer = gen_F_optimizer
self.disc_X_optimizer = disc_X_optimizer
self.disc_Y_optimizer = disc_Y_optimizer
self.generator_loss_fn = gen_loss_fn
self.discriminator_loss_fn = disc_loss_fn
#self.cycle_loss_fn = keras.losses.MeanAbsoluteError()
#self.identity_loss_fn = keras.losses.MeanAbsoluteError()
self.cycle_loss_fn = cycle_loss_fn
self.identity_loss_fn = identity_loss_fn
def train_step(self, batch_data):
# x is Horse and y is zebra
real_x, real_y = batch_data
with tf.GradientTape(persistent=True) as tape:
# Horse to fake zebra
fake_y = self.gen_G(real_x, training=True)
# Zebra to fake horse -> y2x
fake_x = self.gen_F(real_y, training=True)
# Cycle (Horse to fake zebra to fake horse): x -> y -> x
cycled_x = self.gen_F(fake_y, training=True)
# Cycle (Zebra to fake horse to fake zebra) y -> x -> y
cycled_y = self.gen_G(fake_x, training=True)
# Identity mapping
same_x = self.gen_F(real_x, training=True)
same_y = self.gen_G(real_y, training=True)
# Discriminator output
disc_real_x = self.disc_X(real_x, training=True)
disc_fake_x = self.disc_X(fake_x, training=True)
disc_real_y = self.disc_Y(real_y, training=True)
disc_fake_y = self.disc_Y(fake_y, training=True)
# Generator adverserial loss
gen_G_loss = self.generator_loss_fn(disc_fake_y)
gen_F_loss = self.generator_loss_fn(disc_fake_x)
# Generator cycle loss
cycle_loss_G = self.cycle_loss_fn(real_y, cycled_y) * self.lambda_cycle
cycle_loss_F = self.cycle_loss_fn(real_x, cycled_x) * self.lambda_cycle
# Generator identity loss
id_loss_G = (
self.identity_loss_fn(real_y, same_y)
* self.lambda_cycle
* self.lambda_identity
)
id_loss_F = (
self.identity_loss_fn(real_x, same_x)
* self.lambda_cycle
* self.lambda_identity
)
# Total generator loss
total_loss_G = gen_G_loss + cycle_loss_G + id_loss_G
total_loss_F = gen_F_loss + cycle_loss_F + id_loss_F
# Discriminator loss
disc_X_loss = self.discriminator_loss_fn(disc_real_x, disc_fake_x)
disc_Y_loss = self.discriminator_loss_fn(disc_real_y, disc_fake_y)
# Get the gradients for the generators
grads_G = tape.gradient(total_loss_G, self.gen_G.trainable_variables)
grads_F = tape.gradient(total_loss_F, self.gen_F.trainable_variables)
# Get the gradients for the discriminators
disc_X_grads = tape.gradient(disc_X_loss, self.disc_X.trainable_variables)
disc_Y_grads = tape.gradient(disc_Y_loss, self.disc_Y.trainable_variables)
# Update the weights of the generators
self.gen_G_optimizer.apply_gradients(
zip(grads_G, self.gen_G.trainable_variables)
)
self.gen_F_optimizer.apply_gradients(
zip(grads_F, self.gen_F.trainable_variables)
)
# Update the weights of the discriminators
self.disc_X_optimizer.apply_gradients(
zip(disc_X_grads, self.disc_X.trainable_variables)
)
self.disc_Y_optimizer.apply_gradients(
zip(disc_Y_grads, self.disc_Y.trainable_variables)
)
return total_loss_G
# return [total_loss_G, total_loss_F, disc_X_loss, disc_Y_loss]
# Open a strategy scope.
with strategy.scope():
mae_loss_fn = keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.NONE)
# Loss function for evaluating cycle consistency loss
def cycle_loss_fn(real, cycled):
cycle_loss = mae_loss_fn(real, cycled)
cycle_loss = tf.nn.compute_average_loss(cycle_loss, global_batch_size=GLOBAL_BATCH_SIZE)
return cycle_loss
# Loss function for evaluating identity mapping loss
def identity_loss_fn(real, same):
identity_loss = mae_loss_fn(real, same)
identity_loss = tf.nn.compute_average_loss(identity_loss, global_batch_size=GLOBAL_BATCH_SIZE)
return identity_loss
# Loss function for evaluating adversarial loss
adv_loss_fn = keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
# Define the loss function for the generators
def generator_loss_fn(fake):
fake_loss = adv_loss_fn(tf.ones_like(fake), fake)
fake_loss = tf.nn.compute_average_loss(fake_loss, global_batch_size=GLOBAL_BATCH_SIZE)
return fake_loss
# Define the loss function for the discriminators
def discriminator_loss_fn(real, fake):
real_loss = adv_loss_fn(tf.ones_like(real), real)
fake_loss = adv_loss_fn(tf.zeros_like(fake), fake)
real_loss = tf.nn.compute_average_loss(real_loss, global_batch_size=GLOBAL_BATCH_SIZE)
fake_loss = tf.nn.compute_average_loss(fake_loss, global_batch_size=GLOBAL_BATCH_SIZE)
return (real_loss + fake_loss) * 0.5
# Get the generators
gen_G = get_resnet_generator(name="generator_G")
gen_F = get_resnet_generator(name="generator_F")
# Get the discriminators
disc_X = get_discriminator(name="discriminator_X")
disc_Y = get_discriminator(name="discriminator_Y")
# Create cycle gan model
cycle_gan_model = CycleGan(
generator_G=gen_G, generator_F=gen_F, discriminator_X=disc_X, discriminator_Y=disc_Y
)
optimizer = keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5)
# Compile the model
cycle_gan_model.compile(
gen_G_optimizer=optimizer,
gen_F_optimizer=optimizer,
disc_X_optimizer=optimizer,
disc_Y_optimizer=optimizer,
gen_loss_fn=generator_loss_fn,
disc_loss_fn=discriminator_loss_fn,
cycle_loss_fn=cycle_loss_fn,
identity_loss_fn=identity_loss_fn
)
train_dist_dataset = strategy.experimental_distribute_dataset(
tf.data.Dataset.zip((train_horses,
train_zebras)))
# `run` replicates the provided computation and runs it
# with the distributed input.
#tf.function
def distributed_train_step(dataset_inputs):
per_replica_losses = strategy.run(cycle_gan_model.train_step, args=(dataset_inputs,))
return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
axis=None)
"""
## Train the end-to-end model
"""
for epoch in range(1):
# TRAIN LOOP
all_loss = 0.0
num_batches = 0.0
for one_batch in train_dist_dataset:
all_loss += distributed_train_step(one_batch)
num_batches += 1
train_loss = all_loss/num_batches
print(train_loss)

DeblurGAN can't load his own weights anymore

Hey I realy need some help =)
firstly, sorry that it's soo long^^ but I hope that you don't need the full code at the end.
I coded a GAN for deblurring. Now I'm training it. the first 71 epochs have been trained without any problems: I trained some epochs till the colab GPU-time limit was reached, the next day I loaded my weights into the gan and continued training.
2 or 3 weeks ago I wanted to load the weights of epoch 71 in my Gan but I recieved the following error (I'm quite sure that I didn't change anything in the code). Since this moment I only can load the first 65 weights and i get the same error for every epoch higher than 65:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-a35c9a2bbf3a> in <module>()
1 # Load weights
----> 2 gan.load_weights(F"/content/gdrive/My Drive/Colab Notebooks/data/deblurGAN_weights66_batchsize_1.h5")
5 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in load_weights(self, filepath, by_name, skip_mismatch, options)
2209 f, self.layers, skip_mismatch=skip_mismatch)
2210 else:
-> 2211 hdf5_format.load_weights_from_hdf5_group(f, self.layers)
2212
2213 def _updated_config(self):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/hdf5_format.py in load_weights_from_hdf5_group(f, layers)
706 str(len(weight_values)) + ' elements.')
707 weight_value_tuples += zip(symbolic_weights, weight_values)
--> 708 K.batch_set_value(weight_value_tuples)
709
710
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py in batch_set_value(tuples)
3574 if ops.executing_eagerly_outside_functions():
3575 for x, value in tuples:
-> 3576 x.assign(np.asarray(value, dtype=dtype(x)))
3577 else:
3578 with get_graph().as_default():
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py in assign(self, value, use_locking, name, read_value)
856 with _handle_graph(self.handle):
857 value_tensor = ops.convert_to_tensor(value, dtype=self.dtype)
--> 858 self._shape.assert_is_compatible_with(value_tensor.shape)
859 assign_op = gen_resource_variable_ops.assign_variable_op(
860 self.handle, value_tensor, name=name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_shape.py in assert_is_compatible_with(self, other)
1132 """
1133 if not self.is_compatible_with(other):
-> 1134 raise ValueError("Shapes %s and %s are incompatible" % (self, other))
1135
1136 def most_specific_compatible_shape(self, other):
ValueError: Shapes (4, 4, 64, 128) and (64,) are incompatible
I was looking a long time for a solution and i didn't find a real one. But I found out, that if I train one epoch with one of the old weights (1-65) afterwards I can load one of the new weights. So I thought that I could use this "workaround" but yesterday I plotted the scores of the metric of the Test dataset for every epoch. I recieved this picture:
psnrscore/epoch
as you can see it looks like I'm producing trash since epoch 65 (on the pic since 60 because I lost the first 5 epochs, so it starts by 6)
I'm realy frustrated and hope that someone could help me =D
Here's the full code of the GAN:
# Libraries to build the model
from tensorflow import pad
from tensorflow.keras.layers import Layer
from keras.layers import Input, Activation, Add, UpSampling2D
from keras.layers.merge import Add
from keras.layers.core import Dropout, Dense, Flatten
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.core import Lambda
from keras.layers.normalization import BatchNormalization
from keras.models import Model
import keras.backend as K
from keras.applications.vgg16 import VGG16
from keras.optimizers import Adam
import keras
# Reflection padding
from keras.engine import InputSpec
import tensorflow as tf
from keras.engine.topology import Layer
'''
2D Reflection Padding
Attributes:
- padding: (padding_width, padding_height) tuple
'''
class ReflectionPadding2D(Layer):
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
self.input_spec = [InputSpec(ndim=4)]
super(ReflectionPadding2D, self).__init__(**kwargs)
def compute_output_shape(self, s):
""" If you are using "channels_last" configuration"""
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
def call(self, x, mask=None):
w_pad,h_pad = self.padding
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
# Res Block
def res_block(input, filters, kernel_size = (3,3), strides = (1,1), use_dropout = False):
"""
Instanciate a Keras Resnet Block using sequential API.
:param input: Input tensor
:param filters: Number of filters to use
:param kernel_size: Shape of the kernel for the convolution
:param strides: Shape of the strides for the convolution
:param use_dropout: Boolean value to determine the use of dropout
:return: Keras Model
"""
x = ReflectionPadding2D((1,1))(input)
x = Conv2D(filters = filters,
kernel_size = kernel_size,
strides = strides,)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
if use_dropout:
x = Dropout(0.5)(x)
x = ReflectionPadding2D((1,1))(x)
x = Conv2D(filters = filters,
kernel_size = kernel_size,
strides = strides,)(x)
x = BatchNormalization()(x)
# Two convolution layers followed by a direct connection between input and output (skip connection)
out = Add()([input, x])
return out
# Generator
n_res_blocks = 9
def generator_model():
# encoder
inputs = Input(shape = img_shape)
x = ReflectionPadding2D((3, 3))(inputs)
x = Conv2D(filters = 64, kernel_size = (7,7), padding = 'valid')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(128, (3,3), strides=2, padding='same') (x) #DIM(15,15,128)
x = BatchNormalization() (x)
x = Activation('relu') (x)
x = Conv2D(256, (3,3), strides = 2, padding = 'same') (x) #DIM(7,7,256)
x = BatchNormalization() (x)
x = Activation('relu') (x)
# Apply 9 res blocks
for i in range(n_res_blocks):
x = res_block(x, 256, use_dropout = True)
# decoder
#x = Conv2DTranspose(128, (3,3), strides = 2, padding = 'same') (x)
x = UpSampling2D()(x)
x = Conv2D(filters = 128, kernel_size=(3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
#x = Conv2DTranspose(64, (3,3), strides = 2, padding = 'same') (x)
x = UpSampling2D()(x)
x = Conv2D(filters = 64, kernel_size=(3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = ReflectionPadding2D((3,3))(x)
x = Conv2D(filters = 3, kernel_size = (7,7), padding = 'valid')(x)
x = Activation('tanh')(x)
# Add direct connection from input to output and recenter to [-1, 1] (skip connection)
outputs = Add()([x, inputs])
outputs = Lambda(lambda z: z/2)(outputs) # to keep normalized outputs
model = Model(inputs = inputs, outputs = outputs, name = 'Generator')
return model
# Discriminator
def discriminator_model():
Input_img = Input(shape=(img_shape))
x = Conv2D(filters = 64, kernel_size = (4, 4), strides = 2, padding='same')(Input_img)
x = LeakyReLU(0.2)(x)
nf_mult, nf_mult_prev = 1, 1
for n in range(3):
nf_mult_prev, nf_mult = nf_mult, min(2**n, 8)
x = Conv2D(filters = 64*nf_mult, kernel_size = (4, 4), strides = 2, padding = 'same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
nf_mult_prev, nf_mult = nf_mult, 8
x = Conv2D(filters = 64*nf_mult, kernel_size = (4, 4), strides = 1, padding = 'same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = Conv2D(filters = 1, kernel_size = (4, 4), strides = 1, padding = 'same')(x)
x = Flatten()(x)
x = Dense(1024, activation = 'tanh')(x)
x = Dense(1, activation = 'sigmoid')(x)
model = Model(inputs = Input_img, outputs = x, name = 'discriminator')
return model
def gan_model(generator, discriminator):
inputs = Input(shape = img_shape)
generated_images = generator(inputs)
outputs = discriminator(generated_images)
model = Model(inputs=inputs, outputs = [generated_images, outputs])
return model
#Losses
#Wassersteinloss:
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
# vgg16 model for perceptual loss
vgg = VGG16(include_top = False, weights = 'imagenet', input_shape = img_shape)
loss_model = Model(inputs = vgg.input, outputs = vgg.get_layer('block3_conv3').output)
loss_model.trainable = False
#perceptual loss:
def perceptual_loss(y_true, y_pred):
return K.mean(K.square(loss_model(y_true) - loss_model(y_pred)))
#Metrics:
#SSIM:
def ssim_metric(y_true, y_pred):
return tf.reduce_mean(tf.image.ssim(tf.convert_to_tensor(y_true),tf.convert_to_tensor(y_pred), max_val=1.0, ))
#PSNR:
def psnr_metric(y_true, y_pred):
return tf.reduce_mean(tf.image.psnr(y_true, y_pred, max_val=1.0))
def training(epochs, batch_size):
path_psnr = F"/content/gdrive/My Drive/Colab Notebooks/data/psnr"
path_ssim = F"/content/gdrive/My Drive/Colab Notebooks/data/ssim"
GAN_losses = []
#psnrs = []
#ssims = []
random_idx = np.arange(0, X_train.shape[0])
n_batches = int (len(random_idx)/batch_size) #divide trainingset into batches of batch_size
for e in range(epochs):
#weights_name = "deblurGAN_weights%s_batchsize_%r.h5" %(e + 66, batch_size)
weights_name = "deblurGAN_weights_test.h5"
print("epoch: %s " %(e + 66))
#randomize index of trainig set
random.shuffle(random_idx)
for i in range(n_batches):
img_batch_blured = X_train[i*batch_size:(i+1)*batch_size]
img_batch_generated = generator.predict(img_batch_blured)
img_batch_original = Y_train[i*batch_size:(i+1)*batch_size]
img_batch = np.concatenate((img_batch_generated , img_batch_original),0)
valid0 = -np.ones(batch_size)
valid1 = np.ones(batch_size)
valid = np.concatenate((valid0,valid1))
discriminator.trainable = True
for k in range(5):
loss = discriminator.train_on_batch(img_batch, valid)
discriminator.trainable = False
GAN_loss = gan.train_on_batch(img_batch_blured, [img_batch_original, valid1])
GAN_losses.append(GAN_loss)
if (100*i/n_batches).is_integer():
psnr = psnr_metric(img_batch_original, img_batch_generated)
ssim = ssim_metric(img_batch_original, img_batch_generated)
psnrs.append(psnr)
ssims.append(ssim)
#creating 2 files in Google Drive where the psnr and ssim data will be saved.
pickle.dump( psnrs, open( path_psnr, "wb" ) )
pickle.dump( ssims, open( path_ssim, "wb" ) )
print((100*i/n_batches) + 1, "% psnr: ", psnr," ssim: ", ssim)
# Save weights: mode the path to your directory
gan.save_weights(F"/content/gdrive/My Drive/Colab Notebooks/data/{weights_name}")
return [GAN_losses, psnrs, ssims]
# Initialize models
generator = generator_model()
discriminator = discriminator_model()
gan = gan_model(generator, discriminator)
# Initialize optimizers
d_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
gan_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
# Compile models
discriminator.trainable = True
discriminator.compile(optimizer = d_opt, loss = wasserstein_loss)
discriminator.trainable = False
loss = [perceptual_loss, wasserstein_loss]
loss_weights = [100, 1]
gan.compile(optimizer = gan_opt, loss = loss, loss_weights = loss_weights)
discriminator.trainable = True
gan.summary()
# Load weights
gan.load_weights(F"/content/gdrive/My Drive/Colab Notebooks/data/deblurGAN_weights66_batchsize_1.h5")
#connect to GPU
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
loss = training(1, 1) #epochs, batchsize
It is solved an can be closed. I didn't know that the "discriminato.Trainable = True/False" was changed. It seems to be the reason for another ordering in the weights.

loss value don't change(neural network)

I implemented neural network model with tensorflow(version 2.0) on Python3
I don't know the code works properly because loss value don't almost change.
The code is wrong
or
The model is too many parameter(this mean that the code is right)?
Please tell me whether the code works properly.
The following is the code.
import tensorflow as tf
import numpy as np
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class Model(object):
def __init__(self):
self.var_list = []
self.w_layer1 = tf.Variable(tf.random.normal(shape=[28*28, 1000], stddev=0.3,dtype=tf.float64))
self.b_layer1 = tf.Variable(tf.random.normal(shape=[1,], stddev=0.1,dtype=tf.float64))
self.w_layer2 = tf.Variable(tf.random.normal(shape=[1000, 100], stddev=0.3,dtype=tf.float64))
self.b_layer2 = tf.Variable(tf.random.normal(shape=[1,], stddev=0.1,dtype=tf.float64))
self.w_layer3 = tf.Variable(tf.random.normal(shape=[100, 100], stddev=0.3,dtype=tf.float64))
self.b_layer3 = tf.Variable(tf.random.normal(shape=[1,], stddev=0.1,dtype=tf.float64))
self.w_layer4 = tf.Variable(tf.random.normal(shape=[100, 10], stddev=0.3,dtype=tf.float64))
self.b_layer4 = tf.Variable(tf.random.normal(shape=[1,], stddev=0.1,dtype=tf.float64))
self.var_list.append(self.w_layer1)
self.var_list.append(self.b_layer1)
self.var_list.append(self.w_layer2)
self.var_list.append(self.b_layer2)
self.var_list.append(self.w_layer3)
self.var_list.append(self.b_layer3)
self.var_list.append(self.w_layer4)
self.var_list.append(self.b_layer4)
def __call__(self, x):
return self.w*x+self.b
def dense_layer(self, inputs, w, b):
z = tf.matmul(inputs, w) + b
return tf.nn.relu(z)
def output_layer(self, inputs, w, b):
return tf.matmul(inputs, w) + b
def flattend(self, inputs):
inputs = tf.cast(inputs, tf.float64)
return tf.reshape(inputs, [-1, 28*28])
def loss(self, outputs, targets):
predicted_y = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = outputs, labels = targets))
return predicted_y
def grad(self, x, target_y):
with tf.GradientTape() as tape:
tape.watch(self.var_list)
loss_value = self.loss(self.run(x), target_y)
return tape.gradient(loss_value, self.var_list)
def run(self, inputs):
inputs = self.flattend(inputs)
layer1 = self.dense_layer(inputs, self.w_layer1, self.b_layer1)
layer2 = self.dense_layer(layer1, self.w_layer2, self.b_layer2)
layer3 = self.dense_layer(layer2, self.w_layer3, self.b_layer3)
layer4 = self.output_layer(layer3, self.w_layer4, self.b_layer4)
return layer4
def optimizer(self):
opt = tf.keras.optimizers.SGD(learning_rate=0.01)
return opt
def make_onehot_labels(labels):
depth = 10
one_hot_labels = tf.one_hot(labels, depth)
return one_hot_labels
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
train_images = train_images/255.0
test_images = test_images/255.0
train_labels = make_onehot_labels(train_labels)
test_labels = make_onehot_labels(test_labels)
ds_train_x = tf.data.Dataset.from_tensor_slices(train_images)
ds_train_y = tf.data.Dataset.from_tensor_slices(train_labels)
train_dataset = tf.data.Dataset.zip((ds_train_x, ds_train_y)).shuffle(1000).repeat().batch(300)
train_images = tf.convert_to_tensor(train_images)
train_labels = tf.convert_to_tensor(train_labels)
test_images = tf.convert_to_tensor(test_images)
test_labels = tf.convert_to_tensor(test_labels)
count = 1
model = Model()
opt = model.optimizer()
print(model.loss(model.run(train_images), train_labels))
for epoch in range(10):
for data in train_dataset:
if count%200==0:
print(model.loss(model.run(train_images), train_labels))
#print(grads)
break
grads = model.grad(data[0], data[1])
opt.apply_gradients(zip(grads, model.var_list))
count = count+1
the following is the result which the above code executed
tf.Tensor(184.81706096058622, shape=(), dtype=float64)
tf.Tensor(1.2104797483683287, shape=(), dtype=float64)
tf.Tensor(1.2104797483683287, shape=(), dtype=float64)
tf.Tensor(1.2104797483683287, shape=(), dtype=float64)
tf.Tensor(1.2104797483683287, shape=(), dtype=float64)
The issue is in the following part
for epoch in range(10):
for data in train_dataset:
if count%200==0:
print(model.loss(model.run(train_images), train_labels))
#print(grads)
break
grads = model.grad(data[0], data[1])
opt.apply_gradients(zip(grads, model.var_list))
count = count+1
You have a break within the if condition, meaning you break your training loop (and restart a new epoch) when you hit count%200==0. Remove the break and you'll see the error rate going down.
To elaborate on the issue, as soon as you reach count==200 you break the loop, and the counter does not increase anymore so you're basically not reaching anything beyond that if condition after 200 iterations ( this anything beyond includes your gradient application).

ValueError: Cannot feed value of shape (128, 28, 28) for Tensor 'Placeholder:0', which has shape '(?, 784)'

I am new to Tensorflow and Machine Learning and trying out CNN using Tensorflow with my custom input data. But I am getting the error attached below.
The Data or Image Size is 28x28 with 15 Labels.
I am not getting the numpy reshape thing in this script or the error.
Help is highly appreciated.
import tensorflow as tf
import os
import skimage.data
import numpy as np
import random
def load_data(data_directory):
directories = [d for d in os.listdir(data_directory)
if os.path.isdir(os.path.join(data_directory, d))]
labels = []
images = []
for d in directories:
label_directory = os.path.join(data_directory, d)
file_names = [os.path.join(label_directory, f)
for f in os.listdir(label_directory)
if f.endswith(".jpg")]
for f in file_names:
images.append(skimage.data.imread(f))
labels.append(d)
print(str(d)+' Completed')
return images, labels
ROOT_PATH = "H:\Testing\TrainingData"
train_data_directory = os.path.join(ROOT_PATH, "Training")
test_data_directory = os.path.join(ROOT_PATH, "Testing")
print('Loading Data...')
images, labels = load_data(train_data_directory)
print('Data has been Loaded')
n_classes = 15
training_examples = 10500
test_examples = 4500
batch_size = 128
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def neural_network_model(x):
weights = {'W_Conv1':tf.Variable(tf.random_normal([5,5,1,32])),
'W_Conv2':tf.Variable(tf.random_normal([5,5,32,64])),
'W_FC':tf.Variable(tf.random_normal([7*7*64, 1024])),
'Output':tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {'B_Conv1':tf.Variable(tf.random_normal([32])),
'B_Conv2':tf.Variable(tf.random_normal([64])),
'B_FC':tf.Variable(tf.random_normal([1024])),
'Output':tf.Variable(tf.random_normal([n_classes]))}
x = tf.reshape(x, shape=[-1,28,28,1])
conv1 = conv2d(x, weights['W_Conv1'])
conv1 = maxpool2d(conv1)
conv2 = conv2d(conv1, weights['W_Conv2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2, [-1, 7*7*64])
fc = tf.nn.relu(tf.matmul(fc, weights['W_FC'])+biases['B_FC'])
output = tf.matmul(fc, weights['Output'])+biases['Output']
return output
def next_batch(num, data, labels):
idx = np.arange(0 , len(data))
np.random.shuffle(idx)
idx = idx[:num]
data_shuffle = [data[ i] for i in idx]
labels_shuffle = [labels[ i] for i in idx]
return np.asarray(data_shuffle), np.asarray(labels_shuffle)
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
# OLD:
#sess.run(tf.initialize_all_variables())
# NEW:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(training_examples/batch_size)):
epoch_x, epoch_y = next_batch(batch_size, images, labels)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x: images, y: labels}))
print('Training Neural Network...')
train_neural_network(x)
What am I doing wrong? What is needed to be fixed and how do I fix the shape of numpy array?
If you look closely, you'll see that you have two x placeholders:
x = tf.placeholder('float', [None, 784]) # global
...
x = tf.reshape(x, shape=[-1,28,28,1]) # in neural_network_model
One of them is in the function scope, hence not visible in train_neural_network, so tensorflow takes the one with [?, 784] shape. You should get rid of one of them.
Also note that your training data has the rank 3, i.e. [batch_size, 28, 28], so it's not directly compatible with any of those placeholders.
To feed it into the first x, take epoch_x.reshape([-1, 784]). For the second placeholder (once you make it visible), take epoch_x.reshape([-1, 28, 28, 1]).