How does RabbitMQ publisher confirms work? - rabbitmq

I have gone through rabbitmq documentation,
https://www.rabbitmq.com/confirms.html#publisher-confirms
Using standard AMQP 0-9-1, the only way to guarantee that a message
isn't lost is by using transactions -- make the channel transactional
then for each message or set of messages publish, commit. In this
case, transactions are unnecessarily heavyweight and decrease
throughput by a factor of 250. To remedy this, a confirmation
mechanism was introduced. It mimics the consumer acknowledgements
mechanism already present in the protocol.
To enable confirms, a client sends the confirm.select method.
Depending on whether no-wait was set or not, the broker may respond
with a confirm.select-ok. Once the confirm.select method is used on a
channel, it is said to be in confirm mode. A transactional channel
cannot be put into confirm mode and once a channel is in confirm mode,
it cannot be made transactional.
Currently I am using RabbitTemplate.convertAndSend of spring-rabbit library to send message.
I am using transactional channel to publish messages to rabbitmq, As per the document its slower and I can can improve the throughput by using publisher-confirm.
But I am not much clear about it.
If I want to enable confirm then what are changes required and how do I handle exception?
What will be my retrial mechanism?
Does this publisher confirm work in asynchronous way?
And does transaction work in synchronously?
Any suggestion is highly appreciated.

Using publisher confirms will not improve performance significantly over transactions if you wait for the confirm for each individual send. They help significantly if you send many messages and wait for the confirms later.
Transactions are synchronous. Confirms are completely asynchronous.
See Confirms and Returns.
When you enable confirms, you provide a callback to the template which will be called when the confirm is received. You add correlation data to the send, which is provided in the callback so you can determine which send this confirm is for. Furthermore, the correlation data (in recent versions) provides a Future<?> which you can wait on to receive the confirm in a synchronous manner.
That's where you would handle any exception(s).
I hope that helps.
There is a confirms and returns sample Spring Boot application in the samples repo but it was created before the future was added to the CorrelationData. That will be fixed soon.
The correlation data can contain the original message, enabling retry.

Related

ActiveMQ: How do I limit the number of messages being dispatched?

Let's say I have one ActiveMQ Broker and an undefined numbers of consumers.
Problem:
To process a message, consumers need an external service which is either "DATA1" or "DATA2" (specified in the message)
Each server, "DATA1" and "DATA2", can only handle 20 connections
So at most 20 "DATA1" and 20 "DATA2" messages must be dispatched at any time
Because of priorization, the messages must be enqueued in the same queue
Even if message A has a higher prio than message B, if A can't be processed because the external service has no free slots, message B needs to be processed instead
How can this be solved? As long as I was using message pulling (prefetch of 0), I was able to do this by using a BrokerPlugin that, on messagePull, achieved this by using semaphores and selectors. If the limits were reached, the pull returned null.
However, due to performance issues I had to set prefetch to 1 and use push instead. Therefore, my messagePull hack no longer works (it's never called).
So far I'm considering implementing a custom Cursor but I was wondering if someone knows a better solution.
Update the custom cursor worked but broke features like message removal. I tried with a custom Queue and QueueDispatchSelector (which is a pain to configure since there isn't a proper API to do so) and it mostly works but I still have synchronisation issues.
Also, a very suitable API seems to be DispatchPolicy, however, while it is referenced by Queue, it's never used.
Queues give you buffering for system processing time for free. Messages are delivered on demand. With prefetch=0 or prefetch=1, should effectively get you there. Messages will only be delivered to a consumer when the consumer is ready (ie.. during the consumer.receive() method).
consumer.receive() is a blocking call, so you should not need any custom plugin or other to delay delivery until the consumer process (and its required downstream services) are ready to handle it.
The behavior should work out-of-the-box, or there are some details to your use case that are not provided to shed more light on the scenario.

RabbitMQ+MassTransit: how to cancel queued message from processing?

In some exceptional situations I need somehow to tell consumer on receiving point that some messages shouldn’t be processed. Otherwise two systems will become out-of-sync (we deal with some outdates external systems, and if, for example, connection is dropped we have to discard all queued operations in scope of that connection).
Take a risk and resolve problem messages manually? Compensation actions (that could be tough to support in my case)? Anything else?
There are a few ways:
You can set a time-to-live when sending a message: await endpoint.Send(myMessage, c => c.TimeToLive = TimeSpan.FromHours(1));, but this will apply to all messages that are sent (or published) like this. I would consider this, after looking at your requirements. This is technical, but it is a proper messaging pattern.
Make TTL and generation timestamp properties of your message itself and let the consumer decide if the message is still worth processing. This is more business and, probably, the most correct way.
Combine tech and business - keep the timestamp and TTL in message headers so they don't pollute your message contracts, and filter them out using a custom middleware. In this case, you need to be careful to log such drops so you won't be left wonder why messages disappear now and then.
Almost any unreliable integration can be monitored using sagas, with timeouts. For example, we use a saga to integrate with Twilio. Since we have no ability to open a webhook for them, we poll after some interval to check the message status. You can start a saga when you get a message and schedule a message to check if the processing is still waiting. As discussed in comments, you can either use the "human intervention required" way to fix the issue or let the saga decide to drop the message.
A similar way could be to use a lookup table, where you put the list of messages that aren't relevant for processing. Such a table would be similar to the list of sagas. It seems that this way would also require scheduling. Both here, and for the saga, I'd recommend using a separate receive endpoint (a queue) for the DropIt message, with only one consumer. It would prevent DropIt messages from getting stuck behind the integration messages that are waiting to be processed (and some should be already dropped)
Use RMQ management API to remove messages from the queue. This is the worst method, I won't recommend it.
From what I understand, you're building a system that sends messages to 3rd party systems. In other words, systems you don't control. It has an API but compensating actions aren't always possible, because the API doesn't provide it or because actions are performed inside the 3rd party system that can't be compensated or rolled back?
If possible try to solve this via sagas. Make sure the saga executes the different steps (the sending of messages) in the right order. So that messages that cannot be compensated are sent last. This way message that can be compensated if they fail, will be compensated by the saga. The ones that cannot be compensated should be sent last, when you're as sure as possible that they don't have to be compensated. Because that last message is the last step in synchronizing all systems.
All in all this is one of the problems with distributed systems, keeping everything in sync. Compensating actions is the way to deal with this. If compensating actions aren't possible, you're in a very difficult situation. Try to see if the business can help by becoming more flexible and accepting that you need to compensate things, where they'll tell you it's not possible.
In some exceptional situations I need somehow to tell consumer on receiving point that some messages shouldn’t be processed.
Can't you revert this into:
Tell the consumer that an earlier message can be processed.
This way you can easily turn this in a state machine (like a saga) that acts on two messages. If the 2nd message never arrives then you can discard the 1st after a while or do something else.
The strategy here is to halt/wait until certain that no actions need to be reverted.

Immediate flag in RabbitMQ

I have a clients that uses API. The API sends messeges to rabbitmq. Rabbitmq to workers.
I ought to reply to clients if somethings went wrong - message wasn't routed to a certain queue and wasn't obtained for performing at this time ( full confirmation )
A task who is started after 5-10 seconds does not make sense.
Appropriately, I must use mandatory and immediate flags.
I can't increase counts of workers, I can't run workers on another servers. It's a demand.
So, as I could find the immediate flag hadn't been supporting since rabbitmq v.3.0x
The developers of rabbitmq suggests to use TTL=0 for a queue instead but then I will not be able to check status of message.
Whether any opportunity to change that behavior? Please, share your experience how you solved problems like this.
Thank you.
I'm not sure, but after reading your original question in Russian, it might be that using both publisher and consumer confirms may be what you want. See last three paragraphs in this answer.
As you want to get message result for published message from your worker, it looks like RPC pattern is what you want. See RabbitMQ RPC tuttorial. Pick a programming language section there you most comfortable with, overall concept is the same. You may also find Direct reply-to useful.
It's not the same as immediate flag functionality, but in case all your publishers operate with immediate scenario, it might be that AMQP protocol is not the best choice for such kind of task. Immediate mean "deliver this message right now or burn in hell" and it might be a situation when you publish more than you can process. In such cases RPC + response timeout may be a good choice on application side (e.g. socket timeout). But it doesn't work well for non-idempotent RPC calls while message still be processed, so you may want to use per-queue or per-message TTL (or set queue length limit). In case message will be dead-lettered, you may get it there (in case you need that for some reason).
TL;DR
As to "something" can go wrong, it can go so on different levels which we for simplicity define as:
before RabbitMQ, like sending application failure and network problems;
inside RabbitMQ, say, missed destination queue, message timeout, queue length limit, some hard and unexpected internal error;
after RabbitMQ, in most cases - messages processing application error or some third-party services like data persistence or caching layer outage.
Some errors like network outage or hardware error are a bit epic and are not a subject of this q/a.
Typical scenario for guaranteed message delivery is to use publisher confirms or transactions (which are slower). After you got a confirm it mean that RabbitMQ got your message and if it has route - placed in a queue. If not it is dropped OR if mandatory flag set returned with basic.return method.
For consumers it's similar - after basic.consumer/basic.get, client ack'ed message it considered received and removed from queue.
So when you use confirms on both ends, you are protected from message loss (we'll not run into a situation that there might be some bug in RabbitMQ itself).
Bogdan, thank you for your reply.
Seems, I expressed my thought enough clearly.
Scheme may looks like this. Each component of system must do what it must do :)
The an idea is make every component more simple.
How to task is performed.
Clients goes to HTTP-API with requests and must obtain a respones like this:
Positive - it have put to queue
Negative - response with error and a reason
When I was talking about confirmation I meant that I must to know that a message is delivered ( there are no free workers - rabbitmq can remove a message ), a client must be notified.
A sent message couldn't be delivered to certain queue, a client must be notified.
How to a message is handled.
Messages is sent for performing.
Status of perfoming is written into HeartBeat
Status.
Clients obtain status from HeartBeat by itself and then decide that
it's have to do.
I'm not sure, that RPC may be useful for us i.e. RPC means that clients must to wait response from server. Tasks may works a long time. Excess bound between clients and servers, additional logic on client-side.
Limited size of queue maybe not useful too.
Possible situation when a size of queue maybe greater than counts of workers. ( problem in configuration or defined settings ).
Then an idea with 5-10 seconds doesn't make sense.
TTL doesn't usefull because of:
Setting the TTL to 0 causes messages to be expired upon reaching a
queue unless they can be delivered to a consumer immediately. Thus
this provides an alternative to basic.publish's immediate flag, which
the RabbitMQ server does not support. Unlike that flag, no
basic.returns are issued, and if a dead letter exchange is set then
messages will be dead-lettered.
direct reply-to :
The RPC server will then see a reply-to property with a generated
name. It should publish to the default exchange ("") with the routing
key set to this value (i.e. just as if it were sending to a reply
queue as usual). The message will then be sent straight to the client
consumer.
Then I will not be able to route messages.
So, I'm sorry. I may flounder in terms i.e. I'm new in AMQP and rabbitmq.

Persisting Data in a Twisted App

I'm trying to understand how to persist data in a Twisted application. Let's say I've decided to write a Twisted server that:
Accepts inbound SMTP requests
Sends the message to a 3rd party system for modification
Relays the modified message to its destination
A typical Twisted tutorial would have you build this app using Deferreds and callbacks, roughly:
A Factory handles inbound requests
Each time a full email is received a call is sent to the remote message processor, returning a deferred
Add an errback that substitutes the original message if anything goes wrong in the modify call.
Add a callback to send the message on to the recipient, which again returns a deferred.
A real server would add/include additional call/errbacks to retry or notify the sender or whatnot. Again for simplicity, assume we consider this an acceptable amount of effort and just log errors.
Of course, this persists NO data in the event of a crash/restart/something else. I get that a solution involves a 3rd party persistent datastore (RabbitMQ is often mentioned) and could probably come up with a dozen random ways to achieve the outcome.
However, I imagine there are a few approaches that work best in a Twisted app. What do they look like? How do they store (and restore in the event of a crash) the in-process messages?
If you found this question, you probably already know that Twisted is event-based. It sounds simple, but the "hardest" part of the answer is to get the persistence platform generating the events we need when we need them. Naturally, you can persist the data in a DB or a message queue, but some platforms don't naturally generate events. For example:
ZeroMQ has (or at least had) no callback for new data. It's also relatively poor at persistence.
In other cases, events are easy but reliability is a problem:
pgSQL can be configured to generate events using triggers, but they're one-time things so you can't resume incomplete events
The light at the end of the tunnel seems to be something like RabbitMQ.
RabbitMQ can persist the message in a database to survive a crash
We can use acknowledgements on both legs (incoming SMTP to RabbitMQ and RabbitMQ to outgoing SMTP) to ensure the application is reliable. Importantly, RabbitMQ supports acknowledgements.
Finally, several of the RabbitMQ clients provide full asynchronous support (see for example pika, txampq, and puka)
It's enough for our purposes that the RabbitMQ client provides us an event-based interface.
At a more theoretical level, however, this need not be the case. In fact, despite the "notification" issue above, ZeroMQ has an event-based client. Even if our software is elegantly event-based, we will run into systems that aren't. In these cases, we have no choice but to fall back on polling. In principle, if not in practice, we just query the message provider for messages. When we exhaust the current queue (and immediately if there are no messages), we use a callLater command to check again in the future. It may feel anti-pattern, but it's (to the best of my knowledge anyway) the right way to handle this particular case.

Message bus: sender must wait for acknowledgements from multiple recipients

In our application the publisher creates a message and sends it to a topic.
It then needs to wait, when all of the topic's subscribers ack the message.
It does not appear, the message bus implementations can do this automatically. So we are leaning towards making each subscriber send their own new message for the client, when they are done.
Now, the client can receive all such messages and, when it got one from each destination, do whatever clean-ups it has to do. But what if the client (sender) crashes part way through the stream of acknowledgments? To handle such a misfortune, I need to (re)implement, what the buses already implement, on the client -- save the incoming acknowledgments until I get enough of them.
I don't believe, our needs are that esoteric -- how would you handle the situation, where the sender (publisher) must wait for confirmations from multiple recipients (subscribers)? Sort of like requesting (and awaiting) Return-Receipts from each subscriber to a mailing list...
We are using RabbitMQ, if it matters. Thanks!
The functionality that you are looking for sounds like a messaging solution that can perform transactions across publishers and subscribers of a message. In The Java world, JMS specifies such transactions. One example of a JMS implementation is HornetQ.
RabbitMQ does not provide such functionality and it does for good reasons. RabbitMQ is built for being extremely robust and to perform like hell at the same time. The transactional behavior that you describe is only achievable with the cost of reasonable performance loss (especially if you want to keep outstanding robustness).
With RabbitMQ, one way to assure that a message was consumed successfully, is indeed to publish an answer message on the consumer side that is then consumed by the original publisher. This can be achieved through RabbitMQ's RPC procedure calls which might help you to get a clean solution for your problem setting.
If the (original) publisher crashes before all answers could be received, you can assume that all outstanding answers are still queued on the broker. So you would have to build your publisher in a way that it is capable to resume with processing those left messages. This might turn out to be none-trivial.
Finally, I recommend the following solution: Design your producing component in a way that you can consume the answers with one or more dedicated answer consumers that are separated from the origin publisher.
Benefits of this solution are:
the origin publisher can finish its task independent of consumer success
the origin publisher is independent of consumer availability and speed
the origin publisher implementation is far less complex
in a crash scenario, the answer consumer can resume with processing answers
Now to a more general point: One of the major benefits of messaging is the decoupling of application components by the broker. In AMQP, this is achieved with exchanges and bindings that allow you to move message distribution logic from your application to a central point of configuration.
If you add RPC-style calls to your clients, then your components are most likely closely coupled again, meaning that the publishing component fails if one of the consuming components fails / is not available / too slow. This is exactly what you will want to avoid. Otherwise, why would you have split the components then?
My recommendation is that you design your application in a way that publishers can complete their tasks independent of the success of consumers wherever possible. Back-channels should be an exceptional case and be implemented in the described not-so coupled way.