Microservices Architecture for highly frequent data access; in memory solutions? - redis

let us define the following use case:
There has to be a simulation task fulfilled, which involves an iteration/simulation over [day1, day2, ..., dayN]. Every step of the iteration depends on the prior step, so the order is predefined.
The task has a state represented by Object1, this object is going to be changed within every step of the iteration.
The step of an iteration involves 2 different tasks: Task1 and Task2.
To fulfill Task1, data from Database1 is required.
For Task2 to be fulfilled, also external data is needed from a different database, namely Database2.
After Task1 has finished, Task2 needs to be applied.
Task1 and also Task2 needs to access Object1
After both tasks are done, the state of Object1 changes and one iteration step has finished.
This iteration/simulation task involves on average 10,000 iteration steps. And on average 100 iteration/simulation tasks need to be performed concurrently, started by several enduser.
Now we discuss a microservice architecture for the problem, due to the needed scalability of the application in production. Also for development purpose this is crucial, because Task1 and Task2 are recently added new features/parameters and scale differently in development.
So, to avoid the network bottleneck here, involving the constant
database access in every iteration and also the send data between
Task1 and Task2, what would be an appropriate system architecture to
this problem?
Should there be at least two different services for Task1 and
Task2 and maybe even one for the actual iteration/simulation state
control? Can someone maybe tell us a little bit more about the use of
an in memory data grid solution like hazlecast or only in-memory
database like redis for this problem?
The main question here is what are the arguments for a microservice
architecture due to probably communication/network bottleneck? The
only way to speed this up is to spawn all needed data for the
simulation task in memory and keep it there the whole time, to avoid
the network bottleneck?
Thanks for your answers and valuable input on this.
(This question is not about inter service communication, like messaging or REST http (pub/sub or req/resp), both could apply highly network load for this task.)

Now we discuss a microservice architecture for the problem, due to the needed scalability of the application in production. Also for development purpose this is crucial, because Task1 and Task2 are recently added new features/parameters and scale differently in development.
This is exactly what a stream processing platform is doing good. I recommend to use a system like Apache Kafka or Apache Pulsar for this problem.
Should there be at least two different services for Task1 and Task2 and maybe even one for the actual iteration/simulation state control?
Task1 and Task2 is what is called stream processors, they read (subscribe to) one topic, doing some operations/transformations and write (publishes) to another topic.
The main question here is what are the arguments for a microservice architecture due to probably communication/network bottleneck? The only way to speed this up is to spawn all needed data for the simulation task in memory and keep it there the whole time, to avoid the network bottleneck?
Again, this is exactly the problem that a system like Apache Kafka or Apache Pulsar is doing good. To scale writes and reads in a stream processing system, you can partition your topics.

With Hazelcast, you get the best of both worlds - data storage (cache in Hazelcast cluster) and compute/processing. Within the same Hazelcast cluster, you can create caches using Hazelcast data structures and load them with the data from database (pre-load warmup or on-demand loading of data in cache). Then you execute your tasks within the cluster using Hazelcast Jet APIs. This way, your tasks will have access to the data previously loaded into the cluster and the advantage - data is at nearest possible location to your tasks, therefore extremely low latency for tasks execution.
Another benefit of Jet - since Jet is a DAG implementation, you can connect multiple tasks with each other in direction that you like. For example, Task1 can input into Task2, Task2 can input into Task3, Task3 can input into Task1 and 2 both, and so on etc. This gives you full control over full job execution that may entail multiple tasks at different stages. Jet provides both Stream and Batch processing of tasks, with same flexibility in designing and execution of your jobs.
You may find it problematic to use Kafka for tasks execution if used outside of Kafka ecosystem. Jet is highly flexible and can be connected to any source/sink, including Kafka.

Related

ADF Dataflows; Do I have any control or influence over cluster startup time. (NOT "TTL")

Yes, I know about TTL; Yes, I'm configuring that; No, that's not what I'm asking about here.
Spinning up an initial cluster for a Dataflow takes around 5 minutes.
Starting acquiring compute from an existing "warm" cluster (i.e. one which has been left 'Alive' using TTL), for a new dataflow still appears to take 1-2 minutes.
Those are pretty large numbers, especially if you have a multi-step ETL process, and have broken up your pipeline to separate concerns (or if you're executing the dataflows in a loop, to process data per-source-day)
Controlling the TTL gives me some control over which of those two possibilities I'm triggering, but even 2 minutes can be a quite substantial overhead. (I have a pipeline where fully half the execution time is waiting for those 1-2 minute 'Acquire Compute' startups)
Do I have any control at all, over how long startup takes in each case? Is there anything that I can do to speed up the startup, or anything that I should avoid to prevent making things even worse!
There's a new feature in town, to fix exactly this problem.
Release blog:
https://techcommunity.microsoft.com/t5/azure-data-factory/how-to-startup-your-data-flows-execution-in-less-than-5-seconds/ba-p/2267365
ADF has added a new option in the Azure Integration Runtime for data flow TTL: Quick re-use. ... By selecting the re-use option with a TTL setting, you can direct ADF to maintain the Spark cluster for that period of time after your last data flow executes in a pipeline. This will provide much faster sequential executions using that same Azure IR in your data flow activities.

When to use - Delayed Job vs RabbitMQ

Can someone give me the clarity of the advantages of using RabbitMQ(message queue) instead of Delayed Job(background processing) ?
Basically I want to know when to use background processing and messaging queue ?
My web application has 3 components one main server which will handle all user requests and 2 app servers where all the background jobs(like es reindex, es record update, sending emails, crons) should be run.
I saw articles which say Database as a queue(delayed job) is very bad as the consumers will be polling the database for new jobs and updating the statuses of jobs which will lock the tables. Then how does rabbit MQ or other messaging queues store to avoid this problem.
There are other alternatives for delayed job like sidekiq which will run over redis instead of mysql. It is better to use sidekiq instead of rabbitmq?
And are there any advantages of using sidekiq over delayed job?
You have 2 workers and 1 web server: I guess your web app dispatches some delayed jobs to your workers. So you need a way to store the data related to those background jobs.
For that, you can use both a database (like Redis, this is what sidekick is doing) or a message queue (like RabbitMQ). A message queue is a specialized system that is very efficient for this use case (allowing a much higher throughput). A database would let you have a better introspection (as you can request the jobs table to see what your current situation is), while the queuing system would be more efficient but also is more a black box and will require new skills.
If you do not have performance issues, the simpler the better, even a simple mysql database should be enough. If you want a more powerful system or need a lot of monitoring you can also consider using a specialized hosted service such as zenaton (I'm founder) that will do all the heavy lifting for you, including scheduling or more sophisticated orchestration of your background jobs.
Both perform the same task, i.e executing jobs in the background, but go about it differently.
With delayed job one uses some sort of a database for storage, queries for the jobs thereafter then processes them. It's simple to set up but the performance and scalability aren't great.
RabbitMQ or its alternatives Redis e.t.c are harder to set up but their performance, flexibility and scalability is great, we are talking in the upwards of 5000 jobs per second besides you have tend to use less code.
Another option is to use task orchestration system like Cadence Workflow. It supports both delayed execution and queueing, but provides higher level programming model and tons of features that neither queues or delayed execution frameworks.
Cadence offers a lot of advantages over using queues for task processing.
Built it exponential retries with unlimited expiration interval
Failure handling. For example it allows to execute a task that notifies another service if both updates couldn't succeed during a configured interval.
Support for long running heartbeating operations
Ability to implement complex task dependencies. For example to implement chaining of calls or compensation logic in case of unrecoverble failures (SAGA)
Gives complete visibility into current state of the update. For example when using queues all you know if there are some messages in a queue and you need additional DB to track the overall progress. With Cadence every event is recorded.
Ability to cancel an update in flight.
Built in distributed CRON
See the presentation that goes over Cadence programming model.

Can single CPU core work with multiple clients using Distributed Tensorflow?

In Distributed Tensorflow, we could run multiple clients working with workers in Parameter-Server architecture, which is known as "Between-Graph Replication". According to the documentation,
Between-graph replication. In this approach, there is a separate
client for each /job:worker task, typically in the same process as the
worker task.
it says the client and worker typically are in the same process. However, if they are not in the same process, can number of clients are not equal to the number of workers? Also, can multiple clients share and run on the same CPU core?
Clients are the python programs that define a graph and initialize a session in order to run computation. If you start these programs, the created processes represent the servers in the distributed architecture.
Now it is possible to write programs that do not create a graph and do not run session, but rather just call the server.join() method with the appropriate job name and task index. This way you could theoretically have a single client defining the whole graph and start a session with its corresponding server.target; then within this session, parts of the graph are automatically going to be sent to the other processes/servers and they will do the computations (as long as you have set which server/task is going to do what). This setup describes the in-graph replication architecture.
So, it is basically possible to start several servers/processes on the same machine, that has only a single CPU, but you are not going to gain much parallelism, because context switching between multiple running processes is going to slow you down. So unless the servers are doing some unrelated work, you should rather avoid this kind of setup.
Between-graph just means that every worker is going to have its own client and run its own session respectively.

Zookeeper vs In-memory-data-grid vs Redis

I've found different zookeeper definitions across multiple resources. Maybe some of them are taken out of context, but look at them pls:
A canonical example of Zookeeper usage is distributed-memory computation...
ZooKeeper is an open source Apacheā„¢ project that provides a centralized infrastructure and services that enable synchronization across a cluster.
Apache ZooKeeper is an open source file application program interface (API) that allows distributed processes in large systems to synchronize with each other so that all clients making requests receive consistent data.
I've worked with Redis and Hazelcast, that would be easier for me to understand Zookeeper by comparing it with them.
Could you please compare Zookeeper with in-memory-data-grids and Redis?
If distributed-memory computation, how does zookeeper differ from in-memory-data-grids?
If synchronization across cluster, than how does it differs from all other in-memory storages? The same in-memory-data-grids also provide cluster-wide locks. Redis also has some kind of transactions.
If it's only about in-memory consistent data, than there are other alternatives. Imdg allow you to achieve the same, don't they?
https://zookeeper.apache.org/doc/current/zookeeperOver.html
By default, Zookeeper replicates all your data to every node and lets clients watch the data for changes. Changes are sent very quickly (within a bounded amount of time) to clients. You can also create "ephemeral nodes", which are deleted within a specified time if a client disconnects. ZooKeeper is highly optimized for reads, while writes are very slow (since they generally are sent to every client as soon as the write takes place). Finally, the maximum size of a "file" (znode) in Zookeeper is 1MB, but typically they'll be single strings.
Taken together, this means that zookeeper is not meant to store for much data, and definitely not a cache. Instead, it's for managing heartbeats/knowing what servers are online, storing/updating configuration, and possibly message passing (though if you have large #s of messages or high throughput demands, something like RabbitMQ will be much better for this task).
Basically, ZooKeeper (and Curator, which is built on it) helps in handling the mechanics of clustering -- heartbeats, distributing updates/configuration, distributed locks, etc.
It's not really comparable to Redis, but for the specific questions...
It doesn't support any computation and for most data sets, won't be able to store the data with any performance.
It's replicated to all nodes in the cluster (there's nothing like Redis clustering where the data can be distributed). All messages are processed atomically in full and are sequenced, so there's no real transactions. It can be USED to implement cluster-wide locks for your services (it's very good at that in fact), and tehre are a lot of locking primitives on the znodes themselves to control which nodes access them.
Sure, but ZooKeeper fills a niche. It's a tool for making a distributed applications play nice with multiple instances, not for storing/sharing large amounts of data. Compared to using an IMDG for this purpose, Zookeeper will be faster, manages heartbeats and synchronization in a predictable way (with a lot of APIs for making this part easy), and has a "push" paradigm instead of "pull" so nodes are notified very quickly of changes.
The quotation from the linked question...
A canonical example of Zookeeper usage is distributed-memory computation
... is, IMO, a bit misleading. You would use it to orchestrate the computation, not provide the data. For example, let's say you had to process rows 1-100 of a table. You might put 10 ZK nodes up, with names like "1-10", "11-20", "21-30", etc. Client applications would be notified of this change automatically by ZK, and the first one would grab "1-10" and set an ephemeral node clients/192.168.77.66/processing/rows_1_10
The next application would see this and go for the next group to process. The actual data to compute would be stored elsewhere (ie Redis, SQL database, etc). If the node failed partway through the computation, another node could see this (after 30-60 seconds) and pick up the job again.
I'd say the canonical example of ZooKeeper is leader election, though. Let's say you have 3 nodes -- one is master and the other 2 are slaves. If the master goes down, a slave node must become the new leader. This type of thing is perfect for ZK.
Consistency Guarantees
ZooKeeper is a high performance, scalable service. Both reads and write operations are designed to be fast, though reads are faster than writes. The reason for this is that in the case of reads, ZooKeeper can serve older data, which in turn is due to ZooKeeper's consistency guarantees:
Sequential Consistency
Updates from a client will be applied in the order that they were sent.
Atomicity
Updates either succeed or fail -- there are no partial results.
Single System Image
A client will see the same view of the service regardless of the server that it connects to.
Reliability
Once an update has been applied, it will persist from that time forward until a client overwrites the update. This guarantee has two corollaries:
If a client gets a successful return code, the update will have been applied. On some failures (communication errors, timeouts, etc) the client will not know if the update has applied or not. We take steps to minimize the failures, but the only guarantee is only present with successful return codes. (This is called the monotonicity condition in Paxos.)
Any updates that are seen by the client, through a read request or successful update, will never be rolled back when recovering from server failures.
Timeliness
The clients view of the system is guaranteed to be up-to-date within a certain time bound. (On the order of tens of seconds.) Either system changes will be seen by a client within this bound, or the client will detect a service outage.

Need Design & Implementation inputs on Cassandra based use case

I am planning to store high-volume order transaction records from a commerce website to a repository (Have to use cassandra here, that is our DB). Let us call this component commerceOrderRecorderService.
Second part of the problem is - I want to process these orders and push to other downstream systems. This component can be called batchCommerceOrderProcessor.
commerceOrderRecorderService & batchCommerceOrderProcessor both will run on a java platform.
I need suggestion on design of these components. Especially the below:
commerceOrderRecorderService
What is he best way to design the columns, considering performance and scalability? Should I store the entire order (complex entity) as a single JSON object. There is no search requirement on the order attributes. We can at least wait until they are processed by the batch processor. Consider - that a single order can contain many sub-items - at the time of processing each of which can be fulfilled differently. Designing columns for such data structure may be an overkill
What should be the key, given that data volumes would be high. 10 transactions per second let's say during peak. Any libraries or best practices for creating such transactional data in cassandra? Can TTL also be used effectively?
batchCommerceOrderProcessor
How should the rows be retrieved for processing?
How to ensure that a multi-threded implementation of the batch processor ( and potentially would be running on multiple nodes as well ) will have row level isolation. That is no two instance would read and process the same row at the same time. No duplicate processing.
How to purge the data after a certain period of time, while being friendly to cassandra processes like compaction.
Appreciate design inputs, code samples and pointers to libraries. Thanks.
Depending on the overall requirements of your system, it could be feasible to employ the architecture composed of:
Cassandra to store the orders, analytics and what have you.
Message queue - your commerce order recorder service would simple enqueue new order to the transactional and persistent queue and return. Scalability and performance should not be an issue here as you can easily achieve thousands of transactions per second with a single queue server. You may have a look at RabbitMQ as one of available choices.
Stream processing framework - you could read a stream of messages from the queue in a scalable fashion using streaming frameworks such as Twitter Storm. You could implement in Java than 3 simple pipelined processes in Storm:
a) Spout process that dequeues next order from the queue and pass it to
the second process
b) Second process called Bolt that inserts each next order to Cassandra and pass it to the third bolt
c) Third Bolt process that pushes the order to other downstream systems.
Such an architecture offers high-performance, scalability, and near real-time, low latency data processing. It takes into account that Cassandra is very strong in high-speed data writes, but not so strong in reading sequential list of records. We use Storm+Cassandra combination in our InnoQuant MOCA platform and handle 25.000 tx/second and more depending on hardware.
Finally, you should consider if such an architecture is not an overkill for your scenario. Nowadays, you can easily achieve 10 tx/second with nearly any single-box database.
This example may help a little. It loads a lot of transactions using the jmxbulkloader and then batches the results into files of a certain size to be transported else where. It multi-threaded but within the same process.
https://github.com/PatrickCallaghan/datastax-bulkloader-writer-example
Hope it helps. BTW it uses the latest cassandra 2.0.5.