Numpy: Construct Slice A La Carte - numpy

Suppose I have the following:
# in pseudo code
# function input 1
chord = [0,1,17,35,47,0]
dims = [0,1,2,4,5,6]
x_axis = 3
t_axis = 7
# what I'd like to return
np.squeeze(arr[0,1,17,:,35,47,0,:])
# function input 2
chord = [0,3,4,5,6,7]
dims = [0,2,3,4,5,6]
x_axis = 1
t_axis = 7
# desired return
np.squeeze(arr[0,:,3,4,5,6,7,:])
How do I construct these numpy slices given input that I can arbitrarily specify a pair of axes and a chord coordinate?

I implemented a reflection-based solution:
def reflection_window(arr:np.ndarray,chord:list,dim0,dim1):
var = "arr"
bra = "["
ket = "]"
coord = [str(i) for int(i) in chord]
coord.insert(dim0,':')
coord.insert(dim1,':')
chordstr = ','.join(coord)
slicer = var+bra+chordstr+ket
return eval(slicer)
Staying native to numpy is probably better, but since python is a shell scripting language, it probably makes sense to treat it that way if necessary.

Related

passing panda dataframe data to functions and its not outputting the results

In my code, I am trying to extract data from csv file to use in the function, but it doesnt output anything, and gives no error. My code works because I tried it with just numpy array as inputs. not sure why it doesnt work with panda.
import numpy as np
import pandas as pd
import os
# change the current directory to the directory where the running script file is
os.chdir(os.path.dirname(os.path.abspath(__file__)))
# finding best fit line for y=mx+b by iteration
def gradient_descent(x,y):
m_iter = b_iter = 1 #starting point
iteration = 10000
n = len(x)
learning_rate = 0.05
last_mse = 10000
#take baby steps to reach global minima
for i in range(iteration):
y_predicted = m_iter*x + b_iter
#mse = 1/n*sum([value**2 for value in (y-y_predicted)]) # cost function to minimize
mse = 1/n*sum((y-y_predicted)**2) # cost function to minimize
if (last_mse - mse)/mse < 0.001:
break
# recall MSE formula is 1/n*sum((yi-y_predicted)^2), where y_predicted = m*x+b
# using partial deriv of MSE formula, d/dm and d/db
dm = -(2/n)*sum(x*(y-y_predicted))
db = -(2/n)*sum((y-y_predicted))
# use current predicted value to get the next value for prediction
# by using learning rate
m_iter = m_iter - learning_rate*dm
b_iter = b_iter - learning_rate*db
print('m is {}, b is {}, cost is {}, iteration {}'.format(m_iter,b_iter,mse,i))
last_mse = mse
#x = np.array([1,2,3,4,5])
#y = np.array([5,7,8,10,13])
#gradient_descent(x,y)
df = pd.read_csv('Linear_Data.csv')
x = df['Area']
y = df['Price']
gradient_descent(x,y)
My code works because I tried it with just numpy array as inputs. not sure why it doesnt work with panda.
Well no, your code also works with pandas dataframes:
df = pd.DataFrame({'Area': [1,2,3,4,5], 'Price': [5,7,8,10,13]})
x = df['Area']
y = df['Price']
gradient_descent(x,y)
Above will give you the same output as with numpy arrays.
Try to check what's in Linear_Data.csv and/or add some print statements in the gradient_descent function just to check your assumptions. I would suggest to first of all add a print statement before the condition with the break statement:
print(last_mse, mse)
if (last_mse - mse)/mse < 0.001:
break

How to show the class distribution in Dataset object in Tensorflow

I am working on a multi-class classification task using my own images.
filenames = [] # a list of filenames
labels = [] # a list of labels corresponding to the filenames
full_ds = tf.data.Dataset.from_tensor_slices((filenames, labels))
This full dataset will be shuffled and split into train, valid and test dataset
full_ds_size = len(filenames)
full_ds = full_ds.shuffle(buffer_size=full_ds_size*2, seed=128) # seed is used for reproducibility
train_ds_size = int(0.64 * full_ds_size)
valid_ds_size = int(0.16 * full_ds_size)
train_ds = full_ds.take(train_ds_size)
remaining = full_ds.skip(train_ds_size)
valid_ds = remaining.take(valid_ds_size)
test_ds = remaining.skip(valid_ds_size)
Now I am struggling to understand how each class is distributed in train_ds, valid_ds and test_ds. An ugly solution is to iterate all the element in the dataset and count the occurrence of each class. Is there any better way to solve it?
My ugly solution:
def get_class_distribution(dataset):
class_distribution = {}
for element in dataset.as_numpy_iterator():
label = element[1]
if label in class_distribution.keys():
class_distribution[label] += 1
else:
class_distribution[label] = 0
# sort dict by key
class_distribution = collections.OrderedDict(sorted(class_distribution.items()))
return class_distribution
train_ds_class_dist = get_class_distribution(train_ds)
valid_ds_class_dist = get_class_distribution(valid_ds)
test_ds_class_dist = get_class_distribution(test_ds)
print(train_ds_class_dist)
print(valid_ds_class_dist)
print(test_ds_class_dist)
The answer below assumes:
there are five classes.
labels are integers from 0 to 4.
It can be modified to suit your needs.
Define a counter function:
def count_class(counts, batch, num_classes=5):
labels = batch['label']
for i in range(num_classes):
cc = tf.cast(labels == i, tf.int32)
counts[i] += tf.reduce_sum(cc)
return counts
Use the reduce operation:
initial_state = dict((i, 0) for i in range(5))
counts = train_ds.reduce(initial_state=initial_state,
reduce_func=count_class)
print([(k, v.numpy()) for k, v in counts.items()])
A solution inspired by user650654 's answer, only using TensorFlow primitives (with tf.unique_with_counts instead of for loop):
In theory, this should have better performance and scale better to large datasets, batches or class count.
num_classes = 5
#tf.function
def count_class(counts, batch):
y, _, c = tf.unique_with_counts(batch[1])
return tf.tensor_scatter_nd_add(counts, tf.expand_dims(y, axis=1), c)
counts = train_ds.reduce(
initial_state=tf.zeros(num_classes, tf.int32),
reduce_func=count_class)
print(counts.numpy())
Similar and simpler version with numpy that actually had better performances for my simple use-case:
count = np.zeros(num_classes, dtype=np.int32)
for _, labels in train_ds:
y, _, c = tf.unique_with_counts(labels)
count[y.numpy()] += c.numpy()
print(count)

how to make a memory efficient multiple dimension groupby/stack using xarray?

I have a large time series of np.float64 with a 5-min frequency (size is ~2,500,000 ~=24 years).
I'm using Xarray to represent it in-memory and the time-dimension is named 'time'.
I want to group-by 'time.hour' and then 'time.dayofyear' (or vice-versa) and remove both their mean from the time-series.
In order to do that efficiently, i need to reorder the time-series into a new xr.DataArray with the dimensions of ['hour', 'dayofyear', 'rest'].
I wrote a function that plays with the GroupBy objects of Xarray and manages to do just that although it takes a lot of memory to do that...
I have a machine with 32GB RAM and i still get the MemoryError from numpy.
I know the code works because i used it on an hourly re-sampled version of my original time-series. so here's the code:
def time_series_stack(time_da, time_dim='time', grp1='hour', grp2='dayofyear'):
"""Takes a time-series xr.DataArray objects and reshapes it using
grp1 and grp2. outout is a xr.Dataset that includes the reshaped DataArray
, its datetime-series and the grps."""
import xarray as xr
import numpy as np
import pandas as pd
# try to infer the freq and put it into attrs for later reconstruction:
freq = pd.infer_freq(time_da[time_dim].values)
name = time_da.name
time_da.attrs['freq'] = freq
attrs = time_da.attrs
# drop all NaNs:
time_da = time_da.dropna(time_dim)
# group grp1 and concat:
grp_obj1 = time_da.groupby(time_dim + '.' + grp1)
s_list = []
for grp_name, grp_inds in grp_obj1.groups.items():
da = time_da.isel({time_dim: grp_inds})
s_list.append(da)
grps1 = [x for x in grp_obj1.groups.keys()]
stacked_da = xr.concat(s_list, dim=grp1)
stacked_da[grp1] = grps1
# group over the concatenated da and concat again:
grp_obj2 = stacked_da.groupby(time_dim + '.' + grp2)
s_list = []
for grp_name, grp_inds in grp_obj2.groups.items():
da = stacked_da.isel({time_dim: grp_inds})
s_list.append(da)
grps2 = [x for x in grp_obj2.groups.keys()]
stacked_da = xr.concat(s_list, dim=grp2)
stacked_da[grp2] = grps2
# numpy part:
# first, loop over both dims and drop NaNs, append values and datetimes:
vals = []
dts = []
for i, grp1_val in enumerate(stacked_da[grp1]):
da = stacked_da.sel({grp1: grp1_val})
for j, grp2_val in enumerate(da[grp2]):
val = da.sel({grp2: grp2_val}).dropna(time_dim)
vals.append(val.values)
dts.append(val[time_dim].values)
# second, we get the max of the vals after the second groupby:
max_size = max([len(x) for x in vals])
# we fill NaNs and NaT for the remainder of them:
concat_sizes = [max_size - len(x) for x in vals]
concat_arrys = [np.empty((x)) * np.nan for x in concat_sizes]
concat_vals = [np.concatenate(x) for x in list(zip(vals, concat_arrys))]
# 1970-01-01 is the NaT for this time-series:
concat_arrys = [np.zeros((x), dtype='datetime64[ns]')
for x in concat_sizes]
concat_dts = [np.concatenate(x) for x in list(zip(dts, concat_arrys))]
concat_vals = np.array(concat_vals)
concat_dts = np.array(concat_dts)
# finally , we reshape them:
concat_vals = concat_vals.reshape((stacked_da[grp1].shape[0],
stacked_da[grp2].shape[0],
max_size))
concat_dts = concat_dts.reshape((stacked_da[grp1].shape[0],
stacked_da[grp2].shape[0],
max_size))
# create a Dataset and DataArrays for them:
sda = xr.Dataset()
sda.attrs = attrs
sda[name] = xr.DataArray(concat_vals, dims=[grp1, grp2, 'rest'])
sda[time_dim] = xr.DataArray(concat_dts, dims=[grp1, grp2, 'rest'])
sda[grp1] = grps1
sda[grp2] = grps2
sda['rest'] = range(max_size)
return sda
So for the 2,500,000 items time-series, numpy throws the MemoryError so I'm guessing this has to be my memory bottle-neck. What can i do to solve this ?
Would Dask help me ? and if so how can i implement it ?
Like you, I ran it without issue when inputting a small time series (10,000 long). However, when inputting a 100,000 long time series xr.DataArraythe grp_obj2 for loop ran away and used all the memory of the system.
This is what I used to generate the time series xr.DataArray:
n = 10**5
times = np.datetime64('2000-01-01') + np.arange(n) * np.timedelta64(5,'m')
data = np.random.randn(n)
time_da = xr.DataArray(data, name='rand_data', dims=('time'), coords={'time': times})
# time_da.to_netcdf('rand_time_series.nc')
As you point out, Dask would be a way to solve it but I can't see a clear path at the moment...
Typically, the kind of problem with Dask would be to:
Make the input a dataset from a file (like NetCDF). This will not load the file in memory but allow Dask to pull data from disk one chunk at a time.
Define all calculations with dask.delayed or dask.futures methods for entire body of code up until the writing the output. This is what allows Dask to chunk a small piece of data to read then write.
Calculate one chunk of work and immediately write output to new dataset file. Effectively you ending up steaming one chunk of input to one chunk of output at a time (but also threaded/parallelized).
I tried importing Dask and breaking the input time_da xr.DataArray into chunks for Dask to work on but it didn't help. From what I can tell, the line stacked_da = xr.concat(s_list, dim=grp1) forces Dask to make a full copy of stacked_da in memory and much more...
One workaround to this is to write stacked_da to disk then immediately read it again:
##For group1
xr.concat(s_list, dim=grp1).to_netcdf('stacked_da1.nc')
stacked_da = xr.load_dataset('stacked_da1.nc')
stacked_da[grp1] = grps1
##For group2
xr.concat(s_list, dim=grp2).to_netcdf('stacked_da2.nc')
stacked_da = xr.load_dataset('stacked_da2.nc')
stacked_da[grp2] = grps2
However, the file size for stacked_da1.nc is 19MB and stacked_da2.nc gets huge at 6.5GB. This is for time_da with 100,000 elements... so there's clearly something amiss...
Originally, it sounded like you want to subtract the mean of the groups from the time series data. It looks like Xarray docs has an example for that. http://xarray.pydata.org/en/stable/groupby.html#grouped-arithmetic
The key is to group once and loop over the groups and then group again on each of the groups and append it to list.
Next i concat and use pd.MultiIndex.from_product for the groups.
No Memory problems and no Dask needed and it only takes a few seconds to run.
here's the code, enjoy:
def time_series_stack(time_da, time_dim='time', grp1='hour', grp2='month',
plot=True):
"""Takes a time-series xr.DataArray objects and reshapes it using
grp1 and grp2. output is a xr.Dataset that includes the reshaped DataArray
, its datetime-series and the grps. plots the mean also"""
import xarray as xr
import pandas as pd
# try to infer the freq and put it into attrs for later reconstruction:
freq = pd.infer_freq(time_da[time_dim].values)
name = time_da.name
time_da.attrs['freq'] = freq
attrs = time_da.attrs
# drop all NaNs:
time_da = time_da.dropna(time_dim)
# first grouping:
grp_obj1 = time_da.groupby(time_dim + '.' + grp1)
da_list = []
t_list = []
for grp1_name, grp1_inds in grp_obj1.groups.items():
da = time_da.isel({time_dim: grp1_inds})
# second grouping:
grp_obj2 = da.groupby(time_dim + '.' + grp2)
for grp2_name, grp2_inds in grp_obj2.groups.items():
da2 = da.isel({time_dim: grp2_inds})
# extract datetimes and rewrite time coord to 'rest':
times = da2[time_dim]
times = times.rename({time_dim: 'rest'})
times.coords['rest'] = range(len(times))
t_list.append(times)
da2 = da2.rename({time_dim: 'rest'})
da2.coords['rest'] = range(len(da2))
da_list.append(da2)
# get group keys:
grps1 = [x for x in grp_obj1.groups.keys()]
grps2 = [x for x in grp_obj2.groups.keys()]
# concat and convert to dataset:
stacked_ds = xr.concat(da_list, dim='all').to_dataset(name=name)
stacked_ds[time_dim] = xr.concat(t_list, 'all')
# create a multiindex for the groups:
mindex = pd.MultiIndex.from_product([grps1, grps2], names=[grp1, grp2])
stacked_ds.coords['all'] = mindex
# unstack:
ds = stacked_ds.unstack('all')
ds.attrs = attrs
return ds

How to optimize the linear coefficients for numpy arrays in a maximization function?

I have to optimize the coefficients for three numpy arrays which maximizes my evaluation function.
I have a target array called train['target'] and three predictions arrays named array1, array2 and array3.
I want to put the best linear coefficients i.e., x,y,z for these three arrays which will maximize the function
roc_aoc_curve(train['target'], xarray1 + yarray2 +z*array3)
the above function would be maximum when prediction is closer to the target.
i.e, xarray1 + yarray2 + z*array3 should be closer to train['target'].
The range of x,y,z >=0 and x,y,z <= 1
Basically I am trying to put the weights x,y,z for each of the three arrays which would make the function
xarray1 + yarray2 +z*array3 closer to the train['target']
Any help in getting this would be appreciated.
I used pulp.LpProblem('Giapetto', pulp.LpMaximize) to do the maximization. It works for normal numbers, integers etc, however failing while trying to do with arrays.
import numpy as np
import pulp
# create the LP object, set up as a maximization problem
prob = pulp.LpProblem('Giapetto', pulp.LpMaximize)
# set up decision variables
x = pulp.LpVariable('x', lowBound=0)
y = pulp.LpVariable('y', lowBound=0)
z = pulp.LpVariable('z', lowBound=0)
score = roc_auc_score(train['target'],x*array1+ y*array2 + z*array3)
prob += score
coef = x+y+z
prob += (coef==1)
# solve the LP using the default solver
optimization_result = prob.solve()
# make sure we got an optimal solution
assert optimization_result == pulp.LpStatusOptimal
# display the results
for var in (x, y,z):
print('Optimal weekly number of {} to produce: {:1.0f}'.format(var.name, var.value()))
Getting error at the line
score = roc_auc_score(train['target'],x*array1+ y*array2 + z*array3)
TypeError: unsupported operand type(s) for /: 'int' and 'LpVariable'
Can't progress beyond this line when using arrays. Not sure if my approach is correct. Any help in optimizing the function would be appreciated.
When you add sums of array elements to a PuLP model, you have to use built-in PuLP constructs like lpSum to do it -- you can't just add arrays together (as you discovered).
So your score definition should look something like this:
score = pulp.lpSum([train['target'][i] - (x * array1[i] + y * array2[i] + z * array3[i]) for i in arr_ind])
A few notes about this:
[+] You didn't provide the definition of roc_auc_score so I just pretended that it equals the sum of the element-wise difference between the target array and the weighted sum of the other 3 arrays.
[+] I suspect your actual calculation for roc_auc_score is nonlinear; more on this below.
[+] arr_ind is a list of the indices of the arrays, which I created like this:
# build array index
arr_ind = range(len(array1))
[+] You also didn't include the arrays, so I created them like this:
array1 = np.random.rand(10, 1)
array2 = np.random.rand(10, 1)
array3 = np.random.rand(10, 1)
train = {}
train['target'] = np.ones((10, 1))
Here is my complete code, which compiles and executes, though I'm sure it doesn't give you the result you are hoping for, since I just guessed about target and roc_auc_score:
import numpy as np
import pulp
# create the LP object, set up as a maximization problem
prob = pulp.LpProblem('Giapetto', pulp.LpMaximize)
# dummy arrays since arrays weren't in OP code
array1 = np.random.rand(10, 1)
array2 = np.random.rand(10, 1)
array3 = np.random.rand(10, 1)
# build array index
arr_ind = range(len(array1))
# set up decision variables
x = pulp.LpVariable('x', lowBound=0)
y = pulp.LpVariable('y', lowBound=0)
z = pulp.LpVariable('z', lowBound=0)
# dummy roc_auc_score since roc_auc_score wasn't in OP code
train = {}
train['target'] = np.ones((10, 1))
score = pulp.lpSum([train['target'][i] - (x * array1[i] + y * array2[i] + z * array3[i]) for i in arr_ind])
prob += score
coef = x + y + z
prob += coef == 1
# solve the LP using the default solver
optimization_result = prob.solve()
# make sure we got an optimal solution
assert optimization_result == pulp.LpStatusOptimal
# display the results
for var in (x, y,z):
print('Optimal weekly number of {} to produce: {:1.0f}'.format(var.name, var.value()))
Output:
Optimal weekly number of x to produce: 0
Optimal weekly number of y to produce: 0
Optimal weekly number of z to produce: 1
Process finished with exit code 0
Now, if your roc_auc_score function is nonlinear, you will have additional troubles. I would encourage you to try to formulate the score in a way that is linear, possibly using additional variables (for example, if you want the score to be an absolute value).

Scipy Optimize minimize returns the initial value

I am building machine learning models for a certain data set. Then, based on the constraints and bounds for the outputs and inputs, I am trying to find the input parameters for the most minimized answer.
The problem which I am facing is that, when the model is a linear regression model or something like lasso, the minimization works perfectly fine.
However, when the model is "Decision Tree", it constantly returns the very initial value that is given to it. So basically, it does not enforce the constraints.
import numpy as np
import pandas as pd
from scipy.optimize import minimize
I am using the very first sample from the input data set for the optimization. As it is only one sample, I need to reshape it to (1,-1) as well.
x = df_in.iloc[0,:]
x = np.array(x)
x = x.reshape(1,-1)
This is my Objective function:
def objective(x):
x = np.array(x)
x = x.reshape(1,-1)
y = 0
for n in range(df_out.shape[1]):
y = Model[n].predict(x)
Y = y[0]
return Y
Here I am defining the bounds of inputs:
range_max = pd.DataFrame(range_max)
range_min = pd.DataFrame(range_min)
B_max=[]
B_min =[]
for i in range(range_max.shape[0]):
b_max = range_max.iloc[i]
b_min = range_min.iloc[i]
B_max.append(b_max)
B_min.append(b_min)
B_max = pd.DataFrame(B_max)
B_min = pd.DataFrame(B_min)
bnds = pd.concat([B_min, B_max], axis=1)
These are my constraints:
con_min = pd.DataFrame(c_min)
con_max = pd.DataFrame(c_max)
Here I am defining the constraint function:
def const(x):
x = np.array(x)
x = x.reshape(1,-1)
Y = []
for n in range(df_out.shape[1]):
y = Model[n].predict(x)[0]
Y.append(y)
Y = pd.DataFrame(Y)
a4 =[]
for k in range(Y.shape[0]):
a1 = Y.iloc[k,0] - con_min.iloc[k,0]
a2 = con_max.iloc[k, 0] - Y.iloc[k,0]
a3 = [a2,a1]
a4 = np.concatenate([a4, a3])
return a4
c = const(x)
con = {'type': 'ineq', 'fun': const}
This is where I try to minimize. I do not pick a method as the automatically picked model has worked so far.
sol = minimize(fun = objective, x0=x,constraints=con, bounds=bnds)
So the actual constraints are:
c_min = [0.20,1000]
c_max = [0.3,1600]
and the max and min range for the boundaries are:
range_max = [285,200,8,85,0.04,1.6,10,3.5,20,-5]
range_min = [215,170,-1,60,0,1,6,2.5,16,-18]
I think you should check the output of 'sol'. At times, the algorithm is not able to perform line search completely. To check for this, you should check message associated with 'sol'. In such a case, the optimizer returns initial parameters itself. There may be various reasons of this behavior. In a nutshell, please check the output of sol and act accordingly.
Arad,
If you have not yet resolved your issue, try using scipy.optimize.differential_evolution instead of scipy.optimize.minimize. I ran into similar issues, particularly with decision trees because of their step-like behavior resulting in infinite gradients.