Let me be more clear giving our use case: We developed a service that makes predictions using Tensorflow. One of our clients would like to use it locally (in his on-premise servers), and we don't want because it's like giving him the model that he can replicate and train (we are billing improvements/maintenance).
If there is a way to make our TF model compiled, he would not be able to find the model graph and parameters. Is there a way to compile a Tensorflow model in an irreversible way?
If not, is there another way to protect our model?
Related
I am using TF-Agents for a custom reinforcement learning problem, where I train a DQN (constructed using DqnAgents from the TF-Agents framework) on some features from my custom environment, and separately use a keras convolutional model to extract these features from images. Now I want to combine these two models into a single model and use transfer learning, where I want to initialize the weights of the first part of the network (images-to-features) as well as the second part which would have been the DQN layers in the previous case.
I am trying to build this combined model using keras.layers and compiling it with the Tf-Agents tf.networks.sequential class to bring it to the necessary form required when passing it to the DqnAgent() class. (Let's call this statement (a)).
I am able to initialize the image feature extractor network's layers with the weights since I saved it as a .h5 file and am able to obtain numpy arrays of the same. So I am able to do the transfer learning for this part.
The problem is with the DQN layers, where I saved the policy from the previous example using the prescribed Tensorflow Saved Model Format (pb) which gives me a folder containing model attributes. However, I am unable to view/extract the weights of my DQN in this way, and the recommended tf.saved_model.load('policy_directory') is not really transparent with respect to what data I can see regarding the policy. If I have to follow the transfer learning as I do in statement (a), I need to extract the weights of my DQN and assign them to the new network. The documentation seems to be quite sparse for this case where transfer learning needs to be applied.
Can anyone help me in this, by explaining how I can extract weights from the Saved Model method (from the pb file)? Or is there a better way to go about this problem?
I am using a Teachable Machine model which i trained to recognize some specific objects, the issue with it, however, is that it does not recognize when there is nothing, basically it always assumes that one of the objects is there. One potential solution I am considering is combining two models like the YOLO V2 Tflite model in the same app. Would this be even possible/efficient? If it is what would be the best way to do it?
If anyone knows a solution to get teachable machine to recognize when the object is not present that would probably be a much better solution.
Your problem can be solved making a model ensemble: Train a classifier that learns to know if your specific objects are not in the visual space, and then use your detection model.
However, I really recommend you to upload your model to an online service and consume it via an API. As I know tflite package just supports well MobileNet based models.
I had the same problem, just create another class called whatever you want(for example none) and put some non-related images in it, then train the model.
Now whenever there is nothing in the field, it should output none.
I have an untrained Keras model. I want to somehow host this untrained model and then be able to train it with different data sets and save the differet trained models via an API. Then I would like to make predictions with the different trained models via an API.
This is the first time I try to develop a backend service that involves machine learning (not only prediction but also training). Normally I work with express but I'm wondering if the best way is to create a Django API that receives the data to train, loads the model from AWS S3 and the somehow runs a routine that trains the model with the data and sabes the result in S3.Finally when I want to make a prediction I can load the model and make a prediction in the Django app when I receive an API call.
Im not sure how would the whole pipeline work. I appreciate any comments.
In reality the idea is to have multiple models but I would like to know how it would work with 1 before thinking about multiple.
I have implemented a neural network model using Python and Tensorflow, which normally runs on my own computer.
Now I would like to train it on new datasets on the Google Cloud Platform. Do you think it is possible? Do I need to change my code?
Thank you very much for your help!
Google Cloud offers the Cloud ML Engine service, which allows to train your models and perform predictions without the need of running and maintaining an instance with the required software.
In order to run the TensorFlow NN models you already have, you will not need to change your code, you will only have to package the trainer appropriately, as described in the documentation, and run a ML Engine job that performs the training itself. Once you have your model, you can also deploy it in the same service and later get predictions with different features depending on your requirements (urgency in getting the predictions, data set sources, etc.).
Alternatively, as suggested in the comments, you can always launch a Compute Engine instance and run there your TensorFlow model as if you were doing it locally in your computer. However, I would strongly recommend the approach I proposed earlier, as you will be saving some money, because you will only be charged for your usage (training jobs and/or predictions) and do not need to configure an instance from scratch.
I'm actualy new in Machine Learning, but this theme is vary interesting for me, so Im using TensorFlow to classify some images from MNIST datasets...I run this code on Compute Engine(VM) at Google Cloud, because my computer is to weak for this. And the code actualy run well, but the problam is that when I each time enter to my VM and run the same code I need to wait while my model is training on CNN, and after I can make some tests or experiment with my data to plot or import some external images to impruve my accuracy etc.
Is There is some way to save my result of trainin model just once, some where, that when I will decide for example to enter to the same VM tomorrow...and dont wait anymore while my model is training. Is that possible to do this ?
Or there is maybe some another way to do something similar ?
You can save a trained model in TensorFlow and then use it later by loading it; that way you only have to train your model once, and use it as many times as you want. To do that, you can follow the TensorFlow documentation regarding that topic, where you can find information on how to save and load the model. In short, you will have to use the SavedModelBuilder class to define the type and location of your saved model, and then add the MetaGraphs and variables you want to save. Loading the saved model for posterior usage is even easier, as you will only have to run a command pointing to the location of the file in which the model was exported.
On the other hand, I would strongly recommend you to change your working environment in such a way that it can be more profitable for you. In Google Cloud you have the Cloud ML Engine service, which might be good for the type of work you are developing. It allows you to train your models and perform predictions without the need of an instance running all the required software. I happen to have worked a little bit with TensorFlow recently, and at first I was also working with a virtualized instance, but after following some tutorials I was able to save some money by migrating my work to ML Engine, as you are only charged for the usage. If you are using your VM only with that purpose, take a look at it.
You can of course consult all the available documentation, but as a first quickstart, if you are interested in ML Engine, I recommend you to have a look at how to train your models and how to get your predictions.