Culling off-screen objects in OpenGL ES 2 2D - opengl-es-2.0

I'm playing about with OpenGL ES 2.0. If I'm working with a simple 2D projection, if I have a large 2D grid of vertices which are pretty much static (think map tiles), of which only a small proportion are visible at any one time, would it be better to...
Work out in the CPU which vertices are visible, and and create a VBO to draw just those triangles that make up the visible tiles in each frame?
or
Keep a static VBO with the entire tiled grid, and then just rely on the graphics card (RPi, in my case) to clip out the off-screen triangles?
Or perhaps some combination of the two (like sets of overlapping pre-computed grids)? How big does the grid have to be before the latter option becomes unworkable?
Edit
I decided to make several calls to glDrawElements(), drawing sub-ranges of the index buffer that I knew would overlap the viewport. At the scale I'm working at it doesn't seem to make any difference to the speed over drawing the entire element array, even on a Pi Zero.
However, this approach would require more computation to determine which ranges of elements needed to be rendered if there was any rotation of the grid involved - effectively rasterising my own quad. I'm interested to hear if this is a reasonable approach.
There are some other options like a more exotic structure for breaking up the plane into sub areas, I guess. Still not sure if any of this is really necessary, though.
Thanks!
Please note: I don't want to discuss drawing tiles in the fragment shader, I'm more interested in the correct way to work with the vertex shader than actually solving the described problem.

If that's a regular grid, I'd split it in large chunks, so the screen width (larger side) would fit 2-3 such chunks. They don't need to overlap if it's regular grid.
Checking one chunk's visibility is trivial and cheap, as well as finding/selecting those few that must be drawn. And the wasted/clipped area is small enough to not worry about it. You don't have to go crazy and trim every single vertex that's outside of the screen.
Each chunk would have own VBO, and it would be weakly cached when it goes fully outside of screen, so you don't have to rebuild/reload resources needed to draw that chunk if you quickly return to this part of the map.
Splitting in chunks minimizes the memory requirements and speeds up the level loading. You spend time only loading the part of the screen that user will see immediately. This also allows quite huge maps, since you can prefetch the areas that you're going towards to.

Related

How do I rotate an OpenGL view relative to the center of the view as opposed to the center of the object being displayed?

I'm working on a fork of Pleasant3D.
When rotating an object being displayed the object always rotates around the same point relative to to itself even if that point is not at the center of the view (e.g. because the user has panned to move the object in the view).
I would like to change this so that the view always rotates the object around the point at the center of the view as it appears to the user instead of the center of the object.
Here is the core of the current code that rotates the object around its center (slightly simplified) (from here):
glLoadIdentity();
// midPlatform is the offset to reach the "middle" of the object (or more specifically the platform on which the object sits) in the x/y dimension.
// This the point around which the view is currently rotated.
Vector3 *midPlatform = [self.currentMachine calcMidBuildPlatform];
glTranslatef((GLfloat)cameraTranslateX - midPlatform.x,
(GLfloat)cameraTranslateY - midPlatform.y,
(GLfloat)cameraOffset);
// trackBallRotation and worldRotation come from trackball.h/c which appears to be
// from an Apple OpenGL sample.
if (trackBallRotation[0] != 0.0f) {
glRotatef (trackBallRotation[0], trackBallRotation[1], trackBallRotation[2], trackBallRotation[3]);
}
// accumlated world rotation via trackball
glRotatef (worldRotation[0], worldRotation[1], worldRotation[2], worldRotation[3]);
glTranslatef(midPlatform.x, midPlatform.y, 0.);
// Now draw object...
What transformations do I need to apply in what order to get the effect I desire?
Some of what I've tried so far
As I understand it this is what the current code does:
"OpenGL performs matrices multiplications in reverse order if multiple transforms are applied to a vertex" (from here). This means that the first transformation to be applied is actually the last one in the code above. It moves the center of the view (0,0) to the center of the object.
This point is then used as the center of rotation for the next two transformations (the rotations).
Finally the midPlatform translation is done in reverse to move the center back to the original location and the XY translations (panning) done by the user is applied. Here also the "camera" is moved away from the object to the proper location (indicated by cameraOffset).
This seems straightforward enough. So what I need to change is instead of translating the center of the view to the center of the object (midPlatform) I need to translate it to the current center of the view as seen by the user, right?
Unfortunately this is where the transformations start affecting each other in interesting ways and I am running into trouble.
I tried changing the code to this:
glLoadIdentity();
glTranslatef(0,
0,
(GLfloat)cameraOffset);
if (trackBallRotation[0] != 0.0f) {
glRotatef (trackBallRotation[0], trackBallRotation[1], trackBallRotation[2], trackBallRotation[3]);
}
// accumlated world rotation via trackball
glRotatef (worldRotation[0], worldRotation[1], worldRotation[2], worldRotation[3]);
glTranslatef(cameraTranslateX, cameraTranslateY, 0.);
In other words, I translate the center of the view to the previous center, rotate around that, and then apply the camera offset to move the camera away to the proper position. This makes the rotation behave exactly the way I want it to, but it introduces a new issue. Now any panning done by the user is relative to the object. For example if the object is rotated so that the camera is looking along the X axis end-on, if the user pans left to right the object appears to be moving closer/further from the user instead of left or right.
I think I can understand why the is (XY camera translations being applied before rotation), and I think what I need to do is figure out a way to cancel out the translation from before the rotation after the rotation (to avoid the weird panning effect) and then to do another translation which translates relative to the viewer (eye coordinate space) instead of the object (object coordinate space) but I'm not sure exactly how to do this.
I found what I think are some clues in the OpenGL FAQ(http://www.opengl.org/resources/faq/technical/transformations.htm), for example:
9.070 How do I transform my objects around a fixed coordinate system rather than the object's local coordinate system?
If you rotate an object around its Y-axis, you'll find that the X- and Z-axes rotate with the object. A subsequent rotation around one of these axes rotates around the newly transformed axis and not the original axis. It's often desirable to perform transformations in a fixed coordinate system rather than the object’s local coordinate system.
The root cause of the problem is that OpenGL matrix operations postmultiply onto the matrix stack, thus causing transformations to occur in object space. To affect screen space transformations, you need to premultiply. OpenGL doesn't provide a mode switch for the order of matrix multiplication, so you need to premultiply by hand. An application might implement this by retrieving the current matrix after each frame. The application multiplies new transformations for the next frame on top of an identity matrix and multiplies the accumulated current transformations (from the last frame) onto those transformations using glMultMatrix().
You need to be aware that retrieving the ModelView matrix once per frame might have a detrimental impact on your application’s performance. However, you need to benchmark this operation, because the performance will vary from one implementation to the next.
And
9.120 How do I find the coordinates of a vertex transformed only by the ModelView matrix?
It's often useful to obtain the eye coordinate space value of a vertex (i.e., the object space vertex transformed by the ModelView matrix). You can obtain this by retrieving the current ModelView matrix and performing simple vector / matrix multiplication.
But I'm not sure how to apply these in my situation.
You need to transform/translate "center of view" point into origin, rotate, then invert that translation, back to the object's transform. This is known as a basis change in linear algebra.
This is way easier to work with if you have a proper 3d-math library (I'm assuming you do have one), and that also helps to to stay far from the deprecated fixed-pipeline APIs. (more on that later).
Here's how I'd do it:
Find the transform for the center of view point in world coordinates (figure it out, then draw it to make sure it's correct, with x,y,z axis too, since the axii are supposed to be correct w.r.t. the view). If you use the center-of-view point and the rotation (usually the inverse of the camera's rotation), this will be a transform from world origin to the view center. Store this in a 4x4 matrix transform.
Apply the inverse of the above transform, so that it becomes the origin. glMultMatrixfv(center_of_view_tf.inverse());
Rotate about this point however you want (glRotate())
Transform everything back to world space (glMultMatrixfv(center_of_view_tf);)
Apply object's own world transform (glTranslate/glRotate or glMultMatrix) and draw it.
About the fixed function pipeline
Back in the old days, there were separate transistors for transforming a vertex (or it's texture coordinates), computing where light was in relation to it applying lights (up to 8) and texturing fragments in many different ways. Simply, glEnable(), enabled fixed blocks of silicon to do some computation in the hardware graphics pipeline. As performance grew, die sized shrunk and people demanded more features, the amount of dedicated silicon grew too, and much of it wasn't used.
Eventually, it got so advanced that you could program it in rather obscene ways (register combiners anyone). And then, it became feasible to actually upload a small assembler program for all vertex-level transforms. Then, it made to sense to keep a lot of silicon there that just did one thing (especially as you could've used those transistors to make the programmable stuff faster), so everything became programmable. If "fixed function" rendering was called for, the driver just converted the state (X lights, texture projections, etc) to shader code and uploaded that as a vertex shader.
So, currently, where even the fragment processing is programmable, there is just a lot of fixed-function options that is used by tons and tons of OpenGL applications, but the silicon on the GPU just runs shaders (and lots of it, in parallell).
...
To make OpenGL more efficient, and the drivers less bulky, and the hardware simpler and useable on mobile/console devices and to take full advantage of the programmable hardware that OpenGL runs on these days, many functions in the API are now marked deprecated. They are not available on OpenGL ES 2.0 and beyond (mobile) and you won't be getting the best performance out of them even on desktop systems (where they will still be in the driver for ages to come, serving equally ancient code bases originating back to the dawn of accelerated 3d graphics)
The fixed-functionness mostly concerns how transforms/lighting/texturing etc. are done by "default" in OpenGL (i.e. glEnable(GL_LIGHTING)), instead of you specifying these ops in your custom shaders.
In the new, programmable, OpenGL, transform matrices are just uniforms in the shader. Any rotate/translate/mult/inverse (like the above) should be done by client code (your code) before being uploaded to OpenGL. (Using only glLoadMatrix is one way to start thinking about it, but instead of using gl_ModelViewProjectionMatrix and the ilk in your shader, use your own uniforms.)
It's a bit of a bother, since you have to implement quite a bit of what was done by the GL driver before, but if you have your own object list/graph with transforms and a transform somewhere etc, it's not that much work. (OTOH, if you have a lot of glTranslate/glRotate in your code, it might be...). As I said, a good 3d-math library is indispensable here.
-..
So, to change the above code to "programmable pipeline" style, you'd just do all these matrix multiplications in your own code (instead of the GL driver doing it, still on the CPU) and then send the resulting matrix to opengl as a uniform before you activate the shaders and draw your object from VBOs.
(Note that modern cards do not have fixed-function code, just a lot of code in the driver to compile fixed-function rendering state to a shader that does the job. No wonder "classic" GL drivers are huge...)
...
Some info about this process is available at Tom's Hardware Guide and probably Google too.

How does OpenGLES(iPhone) render a huge quad

I need to support the fast rendering of huge quads in the order of 10,000 x 10,000 pixels.
Either in general or specifically to the iPhone, does OpenGLES clip texture drawing to the current viewport automatically? Or do I need to add some code to trim these vertices down to the size of the screen?
I've seen talk about optimizing for a lot of vertices, but what about only 4 vertices in a very large textured quad?
The OpenGL rendering pipeline performs clipping and culling before rasterisation — so there's no per-pixel cost for parts of geometry outside of the viewport.
If you know that your geometry will always exactly fill the viewport then you have more information than you've disclosed to OpenGL and could in theory write code to get to your output geometry in fewer operations. In your case, you'd want to work backwards to project into the world and find the four points that go at screen edges, probably in a vertex shader. However the difference should be so negligible, even if you wrote an absolutely optimal solution, as for it not to be worth the extra code burden.

how to get faster rendering of 400+ polygons with SFML

I'm making a basic simulation of moving planets and gravitational pull between them, and displaying the gravity with a big field of green vectors pointing in the direction gravity is pulling them and magnitude of the strength of the pull.
This means I have 400 + lines, which are really rectangles with a rotation, being redrawn each frame, and this is killing my frame-rate. Is there anyway to optimize this with other than making less lines? How do 2d OpenGL games today achieve such high frame-rates even with many complex polygons/colors?
EDIT:
SFML does the actual rendering each frame, but the way I create my lines is by making a rectangle-like sf::Shape. The generation function takes a width, and sets point 1 as (0, width), point 2 as (0, -width), point 3 as (LineLength, -width), and point 4 (LineLength, width). This forms a rectangle which extends along the positive x-axis. Finally I rotate the rectangle around (0,0) to get it to the right orientation, and set the shapes position to be wherever the start of the line is supposed to be.
How do 2d OpenGL games today achieve such high frame-rates even with many complex polygons/colors?
I imagine by not drawing 400+ 4-vertex objects that are each rotated and scaled with a matrix.
If you want to draw a lot of these things, you're going to have to stop relying on SFML's drawing classes. That introduces a lot of overhead. You're going to have to do it the right way: by drawing lines.
If you insist on each line having a separate width, then you can't use GL_LINES. You must instead compute the four positions of the "line" and stick them in a buffer object. Then, you draw them with a single GL_QUADS call. You will need to use proper buffer object streaming techniques to make this work reasonably fast.
Large batches and VBOs. Also double-check how much time you're spending in your simulation update code.
Quick check: If you have a glBegin() anywhere near your main render loop you are probably Doing It Wrong.
Calculate all your vertex positions, then stream them into the GPU via GL_STREAM_DRAW. If you can tolerate some latency use two VBOs and double-buffer.

On-the-fly Terrain Generation Based on An Existing Terrain

This question is very similar to that posed here.
My problem is that I have a map, something like this:
This map is made using 2D Perlin noise, and then running through the created heightmap assigning types and color values to each element in the terrain based on the height or the slope of the corresponding element, so pretty standard. The map array is two dimensional and the exact dimensions of the screen size (pixel-per-pixel), so at 1200 by 800 generation takes about 2 seconds on my rig.
Now zooming in on the highlighted rectangle:
Obviously with increased size comes lost detail. And herein lies the problem. I want to create additional detail on the fly, and then write it to disk as the player moves around (the player would simply be a dot restricted to movement along the grid). I see two approaches for doing this, and the first one that came to mind I quickly implemented:
This is a zoomed-in view of a new biased local terrain created from a sampled element of the old terrain, which is highlighted by the yellow grid space (to the left of center) in the previous image. However this system would require a great deal of modification, as, for example, if you move one unit left and up of the yellow grid space, onto the beach tile, the terrain changes completely:
So for that to work properly you'd need to do an excessive amount of, I guess the word would be interpolation, to create a smooth transition as the player moved the 40 or so grid-spaces in the local world required to reach the next tile over in the over world. That seems complicated and very inelegant.
The second approach would be to break up the grid of the original map into smaller bits, maybe dividing each square by 4? I haven't implemented this and I'm not sure how I would in a way that would actually increase detail, but I think that would probably end up being the best solution.
Any ideas on how I could approach this? Keep in mind it has to be local and on-the-fly. Just increasing the resolution of the map is something I want to avoid at all costs.
Rewrite your Perlin noise to be a function of position. Then you can increase the octaves (and thus the detail level) and resample the area at a higher resolution.

SpriteSheet, AtlasSprite, Sprite and optimization

I'm developing an iPhone Cocos2D game and reading about optimization. some say use spritesheet whenever possible. others say use atlassprite whenever possible and others say sprite is fine.
I don't get the "whenever possible", when each one can and can't be used?
Also what is the best case for each type?
My game will typically use 100 sprites in a grid, with about 5 types of sprites and some other single sprites. What is the best setup for that? guidelines for deciding for general cases will help too.
Here's what you need to know about spritesheets vs. sprites, generally.
A spritesheet is just a bunch of images put together onto one big image, and then there will be a separate file for image location data (i.e. image 1 starts at coordinate 0,0 with a size of 100,100, image 2 starts at coordinate 100,0, etc).
The advantage here is that loading textures (sprites) is a pretty I/O and memory-alloc intensive operation. If you're trying to do this continually in your game, you may get lags.
The second advantage is memory optimization. If you're using transparent PNGs for your images, there may be a lot of blank pixels -- and you can remove those and "pack" your texture sizes way down than if you used individual images. Good for both space & memory concerns. (TexturePacker is the tool I use for the latter).
So, generally, I'd say it's always a good idea to use a sprite sheet, unless you have non-transparent sprites.