Adding a property using Jackson MixIn's? - jackson

I know we can use Jackson MixIn's to rename a property or to ignore a property (see examples here). But is it possible to add a property?
The added property can be:
A constant (such as a version number)
A computed value (e.g. if the source class has properties for getWidth() and getHeight(), but we want to ignore both and export a getArea() instead)
Flattened information from nested members (e.g. a class has a member Information which in turn has a member Description, and we want to have a new property for description and skipping the nesting structure of Information)

From documentation:
"Mix-in" annotations are a way to associate annotations with classes,
without modifying (target) classes themselves, originally intended to
help support 3rd party datatypes where user can not modify sources to
add annotations.
With mix-ins you can:
1. Define that annotations of a '''mix-in class''' (or interface)
2. will be used with a '''target class''' (or interface) such that it
appears
3. as if the ''target class'' had all annotations that the ''mix-in''
class has (for purposes of configuring serialization /
deserialization)
To solve your problems you can:
Create new POJO which has all required fields.
Implement custom serialiser.
Before serialisation convert POJO to Map and add/remove nodes.
Use com.fasterxml.jackson.databind.ser.BeanSerializerModifier to extend custom serialisers. See: Jackson custom serialization and deserialization.
For example, to add a constant version to each object you can wrap it in Verisoned class:
class Versioned {
private final String version;
#JsonUnwrapped
private final Object pojo;
public Versioned(String version, Object pojo) {
this.version = version;
this.pojo = pojo;
}
public String getVersion() {
return version;
}
public Object getPojo() {
return pojo;
}
}
Now, if you wrap an Arae(width, height) object:
Area area = new Area(11, 12);
String json = mapper.writeValueAsString(new Versioned("1.1", area));
output will be:
{
"version" : "1.1",
"width" : 11,
"height" : 12
}

Related

In ASPNetCore 2.2, Startup.cs, the Configure property only has {get}, yet it is assigned a reference. Why is this? [duplicate]

I created an automated property:
public int Foo { get; }
This is getter only.
But when I build a constructor, I can change the value:
public MyClass(string name)
{
Foo = 5;
}
Why is it possible, even though this is get-only?
This is a new C# 6 feature, "Getter-only auto-properties", also known as "Auto-Property Initializers for Read-Only Properties" as discussed in this MSDN magazine article 'C# : The New and Improved C# 6.0' by Mark Michaelis and in the C# 6.0 draft Language Specification.
The read-only field's setter is only accessible in the constructor, in all other scenarios the field is still read only and behaves as before.
This is a convenience syntax to reduce the amount of code you need to type and to remove the need to explicitly declare a private module level variable to hold the value.
This feature was seen as important as, since the introduction of Auto-Implemented Properties in C#3, mutable properties (those with a getter and setter) had become quicker to write than immutable ones (those with only a getter), meaning people were being tempted to use mutable properties to avoid having to type the code for a backing field usually required for read-only properties. There is more discussion of Auto-Implemented properties in the relevant section of the Microsoft C# Programming Guide.
This blog post, '#1,207 – C# 6.0 – Auto-Property Initializers for Read-Only Properties' by Sean Sexton Has a good explanation and example as follows:
Prior to C# 6.0, if you wanted a read-only (immutable) property, you’d
typically use a read-only backing field that is initialized in the
constructor, as shown below.
public class Dog
{
public string Name { get; set; }
// DogCreationTime is immutable
private readonly DateTime creTime;
public DateTime DogCreationTime
{
get { return creTime; }
}
public Dog(string name)
{
Name = name;
creTime = DateTime.Now;
}
}
In C# 6.0, you can use auto-implemented properties to implement a
read-only property. You do this by using an auto-property
initializer. The result is much cleaner than the above example, where
we had to explicitly declare a backing field.
public class Dog
{
public string Name { get; set; }
// DogCreationTime is immutable
public DateTime DogCreationTime { get; } = DateTime.Now;
public Dog(string name)
{
Name = name;
}
}
More details can also be found in the dotnet Roslyn repo on GitHub:
Auto-properties can now be declared without a setter.
The backing field of a getter-only auto-property is implicitly
declared as readonly (though this matters only for reflection
purposes). It can be initialized through an initializer on the
property as in the example above. Also, a getter-only property can be
assigned to in the declaring type’s constructor body, which causes the
value to be assigned directly to the underlying field:
This is about expressing types more concisely, but note that it also
removes an important difference in the language between mutable and
immutable types: auto-properties were a shorthand available only if
you were willing to make your class mutable, and so the temptation to
default to that was great. Now, with getter-only auto-properties, the
playing field has been leveled between mutable and immutable.
and in the C# 6.0 draft Language Specification (NB: The language specification is final as far as Microsoft are concerned, but it is yet to be approved as a EMCA/ISO standard, hence the 'draft'):
Automatically implemented properties
An automatically implemented property (or auto-property for short), is
a non-abstract non-extern property with semicolon-only accessor
bodies. Auto-properties must have a get accessor and can optionally
have a set accessor.
When a property is specified as an automatically implemented property,
a hidden backing field is automatically available for the property,
and the accessors are implemented to read from and write to that
backing field. If the auto-property has no set accessor, the backing
field is considered readonly (Readonly fields). Just like a readonly
field, a getter-only auto-property can also be assigned to in the body
of a constructor of the enclosing class. Such an assignment assigns
directly to the readonly backing field of the property.
An auto-property may optionally have a property_initializer, which is
applied directly to the backing field as a variable_initializer
(Variable initializers).
This is a new feature in C#6 that allows you to create read-only properties and initialize their values from the constructor (or inline when you declare them).
If you try to change the value of this property outside the constructor, it would give you a compile error.
It is read-only in the sense that once you initialize its value (inline or inside the constructor), you cannot change its value.
If it were not possible to initialize the read-only property from the constructor (or an auto-property initializer), then it would be useless, since it would always return the default value for its type (0 for numerics, null for reference types). The same semantics applied to readonly fields in all C# versions.
To define a true getter-only property (that cannot be initialized from the constructor), you need to specify what it returns as part of the definition:
public int Foo { get { return 5; } }
Or, more concisely in C# 6:
public int Foo => 5;
“readonly automatically implemented properties”
First of all I want to clarify that the property like
public string FirstName { get; }
Is known as “readonly automatically implemented properties”
To verify this you can run & check the above code with Visual Studio. If you change the language version from C#6.0 to C#5.0 then compiler will throw the following exception
Feature 'readonly automatically implemented properties' is not available in C# 5. Please use language version 6 or greater.
to change C# language version visit here
Now I am coming to your second question
“This is getter only. But when I build a constructor, I can change the value”
Microsoft introduces the “readonly automatically implemented properties” on the logic of read only. As we know that the keyword “readonly” is available from C#1.0. we use “readonly” keyword as modifier on a field and that field can be assigned in 2 ways either at the time of declaration or in a constructor in the same class.
In the same way value of “readonly automatically implemented properties” can be assigned in 2 ways
Way1 (at the time of declaration):
public string FirstName { get; } = "Banketeshvar";
Way2 (in a constructor in the same class)
Person()
{
FirstName = "Banketeshvar";
}
Purely ReadOnly Property
If you are looking for purely Readonly property then go for this
public string FullName => "Manish Sharma";
now you cannot assign value of “FullName” propery from constructor.
If you try to do that it will throw the following exceptions
“Property or indexer 'Person.FullName' cannot be assigned to -- it is read only”
Auto property feature was added to the language during C# 3.0 release. It allows you to define a property without any backing field, however you still need to use constructor to initialize these auto properties to non-default value. C# 6.0 introduces a new feature called auto property initializer which allows you to initialize these properties without a constructor like Below:
Previously, a constructor is required if you want to create objects
using an auto-property and initialize an auto-property to a
non-default value like below:
public class MyClass
{
public int Foo { get; }
public Foo(int foo)
{
Foo = foo;
}
}
Now in C# 6.0, the ability to use an initializer with the auto-property
means no explicit constructor code is required.
public string Foo { get; } = "SomeString";
public List<string> Genres { get; } = new List<string> { "Comedy", "Drama" };
You can find more information on this here
A variable declared readonly can be written within a constructor, but in languages which honor the attribute, cannot be modified after the constructor returns. That qualifier was provided as a language feature because it is often necessary for fields whose values will vary based upon constructor parameters (meaning they can't be initialized before the constructor starts) but won't have to change after constructors return, but it was only usable for variables exposed as fields. The semantics of readonly-qualified fields would in many cases have been perfect for public members except that it's often better for classes to expose members--even immutable ones--as properties rather than fields.
Just as read-write auto-properties exist to allow classes to expose mutable properties as easily as ordinary fields, read-only auto-properties exist to allow classes to expose immutable properties as easily as readonly-qualified fields. Just as readonly-qualified fields can be written in a constructor, so too with get-only properties.

In protobuf-net, is there a way to specify a custom method to be used when serializing/deserializing a given type?

In protobuf-net (Marc Gravell implementation), is there a way to specify a custom Serializer/Deserializer to be used everytime protobuf encouters a type to be serialized ?
Something like that :
[ProtoContract]
class Foo
{
[ProtoMember(1), ProtoSerializer(BarSerializer)]
public Bar Something { get; set; }
}
class BarSerializer
{
public void Serialize(object value, Protowriter writer)
{
//do something here with writer...
}
}
I looked at the docs but could not find anything.
I know this is possible to use Protowriter directly to serialize an object (like this DataTable example).
What I would like to do is to use the custom serializer only for a given type and use default implementation for the other types already implemented (eg : int, string, ...)
No, basically. But what you can do is write a second type (a surrogate type) that is used for serialization. This type needs to have conversion operators between the two types (declared on either, usually the surrogate), and be registered into the library, for example:
RuntimeTypeModel.Default[typeof(Foo)].SetSurrogate(typeof(FooSurrogate));
The library still controls how FooSurrogate is written on the wire. There is not currently an API that allows you to directly control the output inside a type. But if you start from ProtoWriter you can of course do everything manually.

JavaFX Wrap an Existing Object with Simple Properties

I am writing a new app and I have chosen to use Java for flexibility. It is a GUI app so I will use JavaFX. This is my first time using Java but I have experience with C#.
I am getting familiar with JavaFX Properties, they look like a great way of bi-directional binding between front-end and back-end.
My code uses classes from an open-source API, and I would like to convert the members of these classes to JavaFX Properties (String => StringProperty, etc). I believe this would be transparent to any objects that refer to these members.
Is it ok to do this?
Is it the suggested way of dealing with existing classes?
What do I do about Enum types? E.g. an enum member has it's value changed, how should I connect the enum member to the front-end?
Thank you :)
In general, as long as you don't change the public API of the class - in other words you don't remove any public methods, modify their parameter types or return types, or change their functionality - you should not break any code that uses them.
So, e.g. a change from
public class Foo {
private String bar ;
public String getBar() {
return bar ;
}
public void setBar(String bar) {
this.bar = bar ;
}
}
to
public class Foo {
private final StringProperty bar = new SimpleStringProperty();
public StringProperty barProperty() {
return bar ;
}
public String getBar() {
return barProperty().get();
}
public void setBar(String bar) {
barProperty().set(bar);
}
}
should not break any clients of the class Foo. The only possible problem is that classes that have subclassed Foo and overridden getBar() and/or setBar(...) might get unexpected behavior if their superclass is replaced with the new implementation (specifically, if getBar() and setBar(...) are not final, you have no way to enforce that getBar()==barProperty().get(), which is desirable).
For enums (and other objects) you can use an ObjectProperty<>:
Given
public enum Option { FIRST_CHOICE, SECOND_CHOICE, THIRD_CHOICE }
Then you can do
public class Foo {
private final ObjectProperty<Option> option = new SimpleObjectProperty<>();
public ObjectProperty<Option> optionProperty() {
return option ;
}
public Option getOption() {
return optionProperty().get();
}
public void setOption(Option choice) {
optionProperty().set(choice);
}
}
One caveat to all this is that you do introduce a dependency on the JavaFX API that wasn't previously present in these classes. JavaFX ships with the Oracle JDK, but it is not a full part of the JSE (e.g. it is not included in OpenJDK by default, and not included in some other JSE implementations). So in practice, you're highly unlikely to be able to persuade the developers of the open source library to accept your changes to the classes in the library. Since it's open source, you can of course maintain your own fork of the library with JavaFX properties, but then it will get tricky if you want to incorporate new versions of that library (you will need to merge two different sets of changes, essentially).
Another option is to use bound properties in the classes, and wrap them using a Java Bean Property Adapter. This is described in this question.

jdto superclass boolean field binding incorrect value

public class Model {
}
public class SuperclassDTO {
private boolean funny = true;
public boolean isFunny() {
return funny;
}
public boolean setFunny(boolean f) {
this.funny = f;
}
}
public class SubclassDTO extends SuperclassDTO {
}
new SubclassDTO().isFunny() //returns true
SubclassDTO dto = binder.bindFromBusinessObject(SubclassDTO.class, new Model());
dto.isFunny(); //returns false!!!!
Isn't this weird? Model class does not have a "funny" field but somehow dto is bind with a wrong value. First I thought jDTO required "getFunny" convention, so it couldn't read the value and just set it "false" but changing the getter name to "getFunny" does not resolve the issue, plus I'm not allowed to modify SuperclassDTO. How can I bind the correct value?
Jdto version 1.4 by the way...
The behavior you're experiencing is a "side effect" of the convention over configuration approach. All the fields on the DTO are configured unless you mark them as transient, either by using the #DTOTransient annotation or the transient configuration on the XML file. If a configured field does not have a corresponding field on the source bean, it will be set with default values and that is the reason why you're experiencing this behavior.
You have some options to overcome this issue:
Add the #DTOTransient annotation to the DTO.
Since you're not able to modify the DTO, you could configure it through XML.
Use Binding lifecycle to Restore the value. By adding code on the subclass.
You might as well submit a bug report on the jDTO issue tracker on github.

struts2: select tag doesn't like beans with "parameters" property?

I have a base class ReportElement which has type property:
public abstract class ReportElement {
private ReportElementType type;
public ReportElementType getType() {
return type;
}
public void setType(ReportElementType type) {
this.type = type;
}
}
ReportElementType is just an enum with specified code and i18nKey properties for each element. I have a couple of subclasses of ReportElement, each of them introducing their own properties. One of them is Plot:
public class Plot extends ReportElement {
public Plot() {
setType(ReportElementType.PLOT);
}
private Collection<Parameter> parameters = new ArrayList<Parameter>();
public Collection<Parameter> getParameters() {
return parameters;
}
}
On some page I needed to display a collection of different ReportElement instances, so I just used struts2 select tag:
<s:select list="myElements" listKey="type.code" listValue="type.i18nKey" size="20"/>
This worked like a charm for every element except for Plot instaces. Instead of invoking getType().getCode() or getType().getI18nKey() plain toString() was invoked on every instance of Plot! After several hours of fun debugging I noticed that during tag evaluation Plot's getParameters() method is called! So it seems struts was trying to evaluate type.code and type.i18nKey using getParameters() method! Failing to do that it ignored the existence of the properties, that I have clearly specified for usage!
After renaming getParameters to a kind of odd name like getParamms the problem gone. Also the problem hasn't occured when using iterator tag together with property tag instead of select tag.
Does anyone have an idea WHY struts select tag uses parameters property of my bean, when I have clearly specified what property should be used? Is it some "cool" feature or a bug?
P.S. I use struts 2.2.3.1
The argument used in all the FreeMarker templates representing a tag's parameters is called parameters. By providing a parameters property that takes precedence, S2 was unable to get to the object on the stack containing the tag's parameters.
It's neither a cool feature nor a bug, it's just how the templates are implemented. Checking the template source may have saved the few hours of debugging.
Found corresponding issue in struts JIRA: https://issues.apache.org/jira/browse/WW-3268
2.3 is specified as fix version.