A table that does not have a primary key and has only one foreign key, can the foreign key be duplicated? - sql

Assuming that the EMP_SALARY_INFO table does not have any other relations apart from the EMPLOYEE table.
My question is there is no primary key for the EMP_SALARY_INFO table. There is only one foreign key. When I create entity instances for the EMP_SALARY_INFO table, my foreign key i.e., EMP_ID repeats. Is this valid or does it violate any relational database rule? If this repetition is a violation, would I have to create a unique id (primary key) for the EMP_SALARY_INFO table?

That is perfectly OK. I would call out that in your example there is a possibility of having duplicate date ranges for the same employee. For example, if a mistake is made during data entry you may have two different pay rates for the same date range. Now, this may be a valid scenario in your case, however if it’s not then consider creating a unique constraint on Emp_id, from_date and till_date.

Foreign key of a particular table is a primary key of the table its referring to. Hence, in your case above as long as you have data in your empid of employee and same data if referred from emp_salary_info wont cause any sort of problem even if it repeats in the emp_salary_info table as its not repeating in the table its referring to i.e. Employee

Related

The usability of Unique Constraint

I would like to ask in which cases its proper to use UNIQUE keyword in SQL. I know that if I declare a column as a primary key has uniqueness on its own but what happens with other attributes like country? Is it proper to use a unique constraint there?
The unique keyword in sql is used whenever you want each and every row entry of that column to be different from each other. A primary key column is automatically unique but there are some cases in which you may want more columns to be unique.
For example if you have a product_id as primary key it will ensure that no other row will have a product with product_id as that row. And in addition to that, you want that no two rows should have the same product_imei, then you can make the product_imei unique.
You can make a composite primary key like Primary Key(column1,column2) but that will mean that the combination you get from product_id and product_imei will be unique.
For example
(DLK-22,356938035643809) and (DLK-22, 11111111111111) both can exist in a table if (product_id,product_imei) is the primary key.
So you can use a unique constraint on as much columns as you like and its need depends on the scenario of the problem you are facing. You can use the unique constraint with the country if that helps you, there is no problem in doing so
The UNIQUE constraint ensures that all values in a column are different. Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of columns. A PRIMARY KEY constraint automatically has a UNIQUE constraint.
As any other constraint the UNIQUE constraint enforces some level of data quality. If you add this constraint to a column, then all values on that column will be different.
For example, on a table where EMPLOYEE_PK is already unique (because it's the PK) you may want to enforce the CARD_NUMBER column is also unique; that's the number displayed on the employee card. In your model the card number may be different from the PK, and you may also need to make sure it's unique.
Another extra benefit of a UNIQUE constraint is that other tables can link foreign keys to it. Since a UNIQUE column effectively acts as a "table key", any other table can establish a foreign key pointing to it. I've met many people who [wrongly] think that foreign keys can only point to primary keys.

One Primary Key Value in many tables

This may seem like a simple question, but I am stumped:
I have created a database about cars (in Oracle SQL developer). I have amongst other tables a table called: Manufacturer and a table called Parentcompany.
Since some manufacturers are owned by bigger corporations, I will also show them in my database.
The parentcompany table is the "parent table" and the Manufacturer table the "child table".
for both I have created columns, each having their own Primary Key.
For some reason, when I inserted the values for my columns, I was able to use the same value for the primary key of Manufacturer and Parentcompany
The column: ManufacturerID is primary Key of Manufacturer. The value for this is: 'MBE'
The column: ParentcompanyID is primary key of Parentcompany. The value for this is 'MBE'
Both have the same value. Do I have a problem with the thinking logic?
Or do I just not understand how primary keys work?
Does a primary key only need to be unique in a table, and not the database?
I would appreciate it if someone shed light on the situation.
A primary key is unique for each table.
Have a look at this tutorial: SQL - Primary key
A primary key is a field in a table which uniquely identifies each
row/record in a database table. Primary keys must contain unique
values. A primary key column cannot have NULL values.
A table can have only one primary key, which may consist of single or
multiple fields. When multiple fields are used as a primary key, they
are called a composite key.
If a table has a primary key defined on any field(s), then you cannot
have two records having the same value of that field(s).
Primary key is table-unique. You can use same value of PI for every separate table in DB. Actually that often happens as PI often incremental number representing ID of a row: 1,2,3,4...
For your case more common implementation would be to have hierarchical table called Company, which would have fields: company_name and parent_company_name. In case company has a parent, in field parent_company_name it would have some value from field company_name.
There are several reasons why the same value in two different PKs might work out with no problems. In your case, it seems to flow naturally from the semantics of the data.
A row in the Manufacturers table and a row in the ParentCompany table both appear to refer to the same thing, namely a company. In that case, giving a company the same id in both tables is not only possible, but actually useful. It represents a 1 to 1 correspondence between manufacturers and parent companies without adding extra columns to serve as FKs.
Thanks for the quick answers!
I think I know what to do now. I will create a general company table, in which all companies will be stored. Then I will create, as I go along specific company tables like Manufacturer and parent company that reference a certain company in the company table.
To clarify, the only column I would put into the sub-company tables is a column with a foreign key referencing a column of the company table, yes?
For the primary key, I was just confused, because I hear so much about the key needing to be unique, and can't have the same value as another. So then this condition only goes for tables, not the whole database. Thanks for the clarification!

Insert into tables with primary and foreign key at same time

Very new to SQL and have spent a day on this already.
Here are my two tables:
Centre(cid, name, location, nurse_supervisor)
Nurse(nid, name, centre_id, certificate)
I have a big problem. The (nurse_supervisor) in Centre is a foreign key to Nurse (nid).
The (centre_id) in Nurse is a foreign key to (Centre cid).
I can't figure out how to populate these tables. I have tried:
INSERT ALL, which produces "A foreign key value has no matching primary key value"
I have tried removing the foreign key constraints and adding them after populating the tables but when I do that it says I can't add a constraint to tables with preexisting data.
I tried removing NOT NULL - but realized that was silly as the constraints will be enforced anyways.
Everything I look through says populate the parent table first and then the child, but these tables are linked to each other.
I am using SQL developer.
This is a poor schema design, but one way to get around it would be to:
Make both centre_id and nurse_supervisor columns NULL in the two table definitions
Insert all rows into both tables, but with NULL for those two columns
Update centre_id to the correct value for each row in the Nurse table
Update nurse_supervisor to the correct value for each row in the Centre table

MS SQL creating many-to-many relation with a junction table

I'm using Microsoft SQL Server Management Studio and while creating a junction table should I create an ID column for the junction table, if so should I also make it the primary key and identity column? Or just keep 2 columns for the tables I'm joining in the many-to-many relation?
For example if this would be the many-to many tables:
MOVIE
Movie_ID
Name
etc...
CATEGORY
Category_ID
Name
etc...
Should I make the junction table:
MOVIE_CATEGORY_JUNCTION
Movie_ID
Category_ID
Movie_Category_Junction_ID
[and make the Movie_Category_Junction_ID my Primary Key and use it as the Identity Column] ?
Or:
MOVIE_CATEGORY_JUNCTION
Movie_ID
Category_ID
[and just leave it at that with no primary key or identity table] ?
I would use the second junction table:
MOVIE_CATEGORY_JUNCTION
Movie_ID
Category_ID
The primary key would be the combination of both columns. You would also have a foreign key from each column to the Movie and Category table.
The junction table would look similar to this:
create table movie_category_junction
(
movie_id int,
category_id int,
CONSTRAINT movie_cat_pk PRIMARY KEY (movie_id, category_id),
CONSTRAINT FK_movie
FOREIGN KEY (movie_id) REFERENCES movie (movie_id),
CONSTRAINT FK_category
FOREIGN KEY (category_id) REFERENCES category (category_id)
);
See SQL Fiddle with Demo.
Using these two fields as the PRIMARY KEY will prevent duplicate movie/category combinations from being added to the table.
There are different schools of thought on this. One school prefers including a primary key and naming the linking table something more significant than just the two tables it is linking. The reasoning is that although the table may start out seeming like just a linking table, it may become its own table with significant data.
An example is a many-to-many between magazines and subscribers. Really that link is a subscription with its own attributes, like expiration date, payment status, etc.
However, I think sometimes a linking table is just a linking table. The many to many relationship with categories is a good example of this.
So in this case, a separate one field primary key is not necessary. You could have a auto-assign key, which wouldn't hurt anything, and would make deleting specific records easier. It might be good as a general practice, so if the table later develops into a significant table with its own significant data (as subscriptions) it will already have an auto-assign primary key.
You can put a unique index on the two fields to avoid duplicates. This will even prevent duplicates if you have a separate auto-assign key. You could use both fields as your primary key (which is also a unique index).
So, the one school of thought can stick with integer auto-assign primary keys, and avoids compound primary keys. This is not the only way to do it, and maybe not the best, but it won't lead you wrong, into a problem where you really regret it.
But, for something like what you are doing, you will probably be fine with just the two fields. I'd still recommend either making the two fields a compound primary key, or at least putting a unique index on the two fields.
I would go with the 2nd junction table. But make those two fields as Primary key. That will restrict duplicate entries.

What is the difference between a candidate key and a primary key?

Is it that a primary key is the selected candidate key chosen for a given table?
Candidate Key – A Candidate Key can be any column or a combination of columns that can qualify as unique key in database. There can be multiple Candidate Keys in one table. Each Candidate Key can qualify as Primary Key.
Primary Key – A Primary Key is a column or a combination of columns that uniquely identify a record. Only one Candidate Key can be Primary Key.
More on this link with example
John Woo's answer is correct, as far as it goes. Here are a few additional points.
A primary key is always one of the candidate keys. Fairly often, it's the only candidate.
A table with no candidate keys does not represent a relation. If you're using the relational model to help you build a good database, then every table you design will have at least one candidate key.
The relational model would be complete without the concept of primary key. It wasn't in the original presentation of the relational model. As a practical matter, the use of foreign key references without a declared primary key leads to a mess. It could be a logically correct mess, but it's a mess nonetheless. Declaring a primary key lets the DBMS help you enforce the data rules. Most of the time, having the DBMS help you enforce the data rules is a good thing, and well worth the cost.
Some database designers and some users have some mental confusion about whether the primary key identifies a row (record) in a table or an instance of an entity in the subject matter that the table represents. In an ideal world, it's supposed to do both, and there should be a one-for-one correspondence between rows in an entity table and instances of the corresponding entity.
In the real world, things get screwed up. Somebody enters the same new employee twice, and the employee ends up with two ids. Somebody gets hired, but the data entry slips through the cracks in some manual process, and the employee doesn't get an id, until the omission is corrected. A database that does not collapse the first time things get screwed up is more robust than one that does.
Primary key -> Any column or set of columns that can uniquely identify a record in the table is a primary key. (There can be only one Primary key in the table)
Candidate key -> Any column or set of columns that are candidate to become primary key are Candidate key. (There can be one or more candidate key(s) in the table, if there is only one candidate key, it can be chosen as Primary key)
A Primary key is a special kind of index in that:
there can be only one;
it cannot be nullable
it must be unique.
Candidate keys are selected from the set of super keys, the only thing we take care while selecting the candidate key is: It should not have any redundant attribute.
Example of an Employee table:
Employee (
Employee ID,
FullName,
SSN,
DeptID
)
Candidate Key: are individual columns in a table that qualifies for the uniqueness of all the rows. Here in Employee table EmployeeID & SSN are Candidate keys.
Primary Key: are the columns you choose to maintain uniqueness in a table. Here in Employee table, you can choose either EmployeeID or SSN columns, EmployeeID is a preferable choice, as SSN is a secure value.
Alternate Key: Candidate column other the Primary column, like if EmployeeID is PK then SSN would be the Alternate key.
Super Key: If you add any other column/attribute to a Primary Key then it becomes a super key, like EmployeeID + FullName, is a Super Key.
Composite Key: If a table does not have a single column that qualifies for a Candidate key, then you have to select 2 or more columns to make a row unique. Like if there is no EmployeeID or SSN columns, then you can make FullName + DateOfBirth as Composite primary Key. But still, there can be a narrow chance of duplicate row.
There is no difference. A primary key is a candidate key. By convention one candidate key in a relation is usually chosen to be the "primary" one but the choice is essentially arbitrary and a matter of convenience for database users/designers/developers. It doesn't make a "primary" key fundamentally any different to any other candidate key.
A table can have so many column which can uniquely identify a row. This columns are referred as candidate keys, but primary key should be one of them because one primary key is enough for a table. So selection of primary key is important among so many candidate key. Thats the main difference.
Think of a table of vehicles with an integer Primary Key.
The registration number would be a candidate key.
In the real world registration numbers are subject change so it depends somewhat on the circumstances what might qualify as a candidate key.
Primary key -> Any column or set of columns that can uniquely identify a record in the table is a primary key. (There can be only one Primary key in the table) and
the candidate key-> the same as Primary key but the Primary Key chosen by DB administrator's prospective for example(the primary key the least candidate key in size)
A primary key is a column (or columns) in a table that uniquely identifies the rows in that table.
CUSTOMERS
CustomerNo FirstName LastName
1 Sally Thompson
2 Sally Henderson
3 Harry Henderson
4 Sandra Wellington
For example, in the table above, CustomerNo is the primary key.
The values placed in primary key columns must be unique for each row: no duplicates can be tolerated. In addition, nulls are not allowed in primary key columns.
So, having told you that it is possible to use one or more columns as a primary key, how do you decide which columns (and how many) to choose?
Well there are times when it is advisable or essential to use multiple columns. However, if you cannot see an immediate reason to use multiple columns, then use one. This isn't an absolute rule, it is simply advice. However, primary keys made up of single columns are generally easier to maintain and faster in operation. This means that if you query the database, you will usually get the answer back faster if the tables have single column primary keys.
Next question — which column should you pick? The easiest way to choose a column as a primary key (and a method that is reasonably commonly employed) is to get the database itself to automatically allocate a unique number to each row.
In a table of employees, clearly any column like FirstName is a poor choice since you cannot control employee's first names. Often there is only one choice for the primary key, as in the case above. However, if there is more than one, these can be described as 'candidate keys' — the name reflects that they are candidates for the responsible job of primary key.
If superkey is a big set than candidate key is some smaller set inside big set and primary key any one element(one at a time or for a table) in candidate key set.
First you have to know what is a determinant?
the determinant is an attribute that used to determine another attribute in the same table.
SO the determinant must be a candidate key. And you can have more than one determinant.
But primary key is used to determine the whole record and you can have only one primary key.
Both primary and candidate key can consist of one or more attributes