Is CAN half or full duplex? - embedded

Is CAN (Controller Area Network) half duplex or full duplex communication? And what is the rationale why?
Is there an ISO CAN document which would clear up my confusion?

CAN has a single sender with priority arbitration. If two or more nodes attempt to send simultaneously, any nodes transmitting a lower priority ID will stop transmitting during the arbitration phase.
If your definition of "full duplex" is two transmitters able to send a message concurrently, then CAN does not meet that definition.

Related

RabbitMQ - Reprioritize message already in queue

We are building spark based jobs. Processing each message delivered by the queue takes time. There is a need to be able to reprioritize one already sent to the queue.
I am aware there is priority queue implementation available, but not sure how to re-prioritize the existing message in the queue?
One bad workaround is to push that message again as higher priority, so that it handled on priority. Later drop the message with same content which had low or no priority when it's turns comes next.
Is there a natural way we can handle this situation or any other queues that supports scenario better?
Unfortunately there isn't. Queues are to be considered as lists of messages in flight. It is not possible to delete/update them.
Your approach of submitting a higher priority message is the only feasible solution.
RabbitMQ is a messaging system (such as the postal one), it is not a DataBase or a storage service. The storage in form of queues is a necessary feature as much as the postal service needs storage for postcards in transit. It is optimized for the purpose and does not allow to access the messages easily.

How to guarantee message order in RabbitMQ (or any other asynchronous message queue service)

I have a Java application which publishes events to RabbitMQ. It has one very important characteristic: message order must be preserved at all times. The consumer can handle duplicates, but it cannot handle when message 2 is enqueued before message 1, so to say.
I have been reading a lot about RabbitMQ lately, and I feel there is only solution to do this: set the channel in confirm mode (https://www.rabbitmq.com/confirms.html - basically, it forces the broker to acknowledge the publication) and publish one by one. With one by one I mean that the message 2 is only published after RabbitMQ confirmed (via an asynchronous ACK response) that message 1 is actually well received and persisted.
I tried this in a conceptual implementation, and while this works fine, it's uber slow, without exaggerating. Which makes sense: after all, we are now limiting our message rate to 1 message at a time.
So this leads me to my question: are there other, more performant, ways to ensure that message ordering is always preserved (either in RabbitMQ or via different approaches)?
Although my concern is RabbitMQ, I believe this question might be applied to any kind of asynchronous message queue service.
RabbitMQ's clients enqueue in the same order that you sent. It's when subscribers go down, you get network splits or the subscriber NACKs messages that they can get re-ordered; and even then RMQ tries to keep them in the same approximate order by re-queueing at the same position, or as close to the same position.
You can do it like you suggest; take one message at a time, because if you take a message, but crash before you've ACKed it from the broker, it will pop up when your service comes back up, at the same position.
This assumes you only have a single service instance at any given time, consuming from the queue. Which in turn is a distributed systems problem on its own, if you have a scheduler like Kubernetes or Mesos, spawning your service instances.
Another solution would be to ensure ordering of processing in the receiving service, by "resequencing" the messages based on their logical timestamps/sequence numbers.
I've written a much more thorough guide as annotated code here https://github.com/haf/rmq-publisher-confirms-hopac/blob/master/src/Server/Shared/RabbitMQ.fs — with batching you can resequence. Furthermore, if your idempotence builds the consecutive sequence numbers into its logic, you can start taking batches and each event will be idempotent, despite being re-consumed.

Rabbitmq: how worker can "ignore" a message and let an other worker treating it

Here's my current architecture
I have a bunch of IoT devices, that connects through raw duplex persistent TCP to 1 instances of my "worker" that is connected to a RabbitMQ Queue
My publisher publishes some messages that look like that
{
"iot_device_name" : "A",
"command" : "reboot"
}
The worker is then able to map the iot_device_name to the TCP socket.
All is working nice, but if we want to add HA and to scale out a bit, it would be better to have 4 instances of the worker. Load balancing the TCP question is not a problem (with HaProxy or Nginx).
Now the problem is on how to split the load on the Queue part, as the list of IoT devices handled by a worker is dynamic (i.e a device could disconnect and reconnect to an other worker)
So is there a way for a worker to say: "Hmmm no I can't treat this message because I don't know this device, give me an other" so that an other worker can then take it and handle it ?
Other information that may be of help:
the workers are all in the same network, that is also the same than the publisher
the numbers of workers is not dynamic and even if we extrapolate the number of devices for the next years, 8 workers would takes us VERY FAR, as it simply route message/transcode messages, so their cpu load is ridiculous.
So if I understand your architecture correctly, you have commands sent to your publisher on one side, which are pushed into rabbitmq.
On the consumer side, you have multiple workers, to which the messages are dispatched, and each worker has a bunch of devices connected to it.
If indeed this is your architecture, I'd propose the following for your rabbitmq configuration:
use a direct exchange
each worker has it's own queue (exclusive), and manages the bindings between the exchange and its queue dynamically:
each time a device connects to a worker, that worker adds a binding between its queue and the exchange with as routing key the identifier for the device
each time a worker detects that a device is not connected to it anymore, he removes the related binding from the rabbitmq configuration
related to the detection of disconnected devices, I'd expect it common that it's upon receiving a command to push to the device that a worker realize the device isn't connected to it anymore, in such cases in addition to adapting the bindings, the worker would republish the message to the same exchange with the same routing key, so that it can have another shot at being consumed by the proper worker
I'd also consider configuring a TTL on the queues, no point in consuming a message that's too old
The publisher will of course also need to alter the message, including the intended device identification as routing key
I hope the proposal here makes sense, there are a few other cases to be considered: alternate exchange to make sure we don't lose requests if there is a (short) period when the device hasn't reconnected to a worker and we get a command for it anyway, adding a property to a message republished to ensure we do not add an infinite loop in the system, ... but what is indicated above should be a reasonable starting point to achieve your goal

Large RabbitMQ message in Slow network

I am using RabbitMQ with Spring AMQP
large message (>100MB, 102400KB)
small bandwidth (<512Kbps)
low heartbeat interval (10 seconds)
single broker
It will take >= 200*8 seconds to consume the message, which is more than my heartbeat interval. From https://stackoverflow.com/a/42363685/418439
If the message transfer time between nodes (60seconds?) > heartbeat time between nodes, it will cause the cluster to disconnect and the loose the message
Will I also face the disconnection issue even I am using single broker?
Does the heartbeat and consumer using the same thread, where if
consumer is consuming, it is not possible to perform heartbeat?
If so, what can I do to consume the message, without increase heartbeat interval or reduce my message size?
Update:
I have received another answer and comments after I posted my own answer. Thanks for the feedback. Just to clarify, I do not use AMQP for file transfer. Actually the data is in JSON message, some are simple and small but some contain complex information, include some free hand drawing. Besides saving the data at Data Center, we also save a copy of message at branch level via AMQP, for case connectivity to Data Center is not available.
So, the real questions here are a bit more fundamental, and those are: (1) is it appropriate to perform a large file transfer via AMQP, and (2) what purpose does the heartbeat serve?
Heartbeats
First off, let's address the heartbeat question. As the RabbitMQ documentation clearly states, the purpose of the heartbeat is "to ensure that the application layer promptly finds out about disrupted connections."
The reason for this is simple. In an ordinary AMQP usage, there may be several seconds, even minutes between the arrival of successive messages. Without data being exchanged across a TCP session, many firewalls and other networking equipment automatically close ports to lower exposure to the enterprise network. Heartbeats further help mitigate a fundamental weakness in TCP, which is the difficulty of detecting a dropped connection. Networks experience failure, and TCP is not always able to detect that on its own.
So, the bottom line here is that, while you're transferring a large message, the connection is active and the heartbeat function serves no useful purpose, and can cause you trouble. It's best to turn it off in such cases.
AMQP For Moving Large Files?
The second issue, and I believe more important question, is how should large files be dealt with. To answer this, let's first consider what a message queue does: sending messages -- small bits of data which communicate something to another computer system. The operative word here is small. Messages typically contain one of three things: 1. commands (go do something), 2. events (something happened), 3. requests (give me some data), and 4. responses (here is your data). A full discussion on these is beyond the scope, but suffice it to say that each of these can generally be composed of a small message less than 100kB.
Indeed, the AMQP protocol, which underlies RabbitMQ, is a fairly chatty protocol. It requires large messages be divided into multiple segments of no more than 131kB. This can add a significant amount of overhead to a large file transfer, especially when compared to other file transfer mechanisms (FTP, for instance). Secondly, the message has to be fully processed by the broker before it is made available in a queue, and it ties up valuable resources on the broker while this is being done. For one, the whole message must fit into RAM on the broker due to its architecture. This solution may work for one client and one broker, but it will break quickly when scaling out is attempted.
Finally, compression is often desirable when transferring files - HTTP supports gzip compression automatcially. AMQP does not. It is quite common in message-oriented applications to send a message containing a resource locator (e.g. URL) pointing to the larger data file, which is then accessed via appropriate means.
The moral of the story
As the adage goes: "to the man with a hammer, everything looks like a nail." AMQP is not a hammer- it's a precision scalpel. It has a very specific purpose, and narrow applicability within that purpose. Using it for something other than its intended purpose will lead to stability and reliability problems in whatever it is you are designing, and overall dissatisfaction with your end product.
Will I also face the disconnection issue even I am using single
broker?
Yes
Does the heartbeat and consumer use the same thread, where
if consumer is consuming, it is not possible to perform heartbeat?
Can't confirm the thread, but from what I observe when Java RabbitMQ consumer consumes a message, it won't perform heartbeat acknowledgement. If the time to consume longer than 3 x heartbeat timeout timer (due to large message and/or low bandwidth), MQ server will close AMQP connection.
If so, what can I do to consume the message, without increase
heartbeat interval or reduce my message size?
I resolved my issue by increasing heartbeat size. No further code change is required.

How to load balancing ActiveMQ with persistent message

I have a middleware based on Apache Camel which does a transaction like this:
from("amq:job-input")
to("inOut:businessInvoker-one") // Into business processor
to("inOut:businessInvoker-two")
to("amq:job-out");
Currently it works perfectly. But I can't scale it up, let say from 100 TPS to 500 TPS. I already
Raised the concurrent consumers settings and used empty businessProcessor
Configured JAVA_XMX and PERMGEN
to speed up the transaction.
According to Active MQ web Console, there are so many messages waiting for being processed on scenario 500TPS. I guess, one of the solution is scale the ActiveMQ up. So I want to use multiple brokers in cluster.
According to http://fuse.fusesource.org/mq/docs/mq-fabric.html (Section "Topologies"), configuring ActiveMQ in clustering mode is suitable for non-persistent message. IMHO, it is true that it's not suitable, because all running brokers use the same store file. But, what about separating the store file? Now it's possible right?
Could anybody explain this? If it's not possible, what is the best way to load balance persistent message?
Thanks
You can share the load of persistent messages by creating 2 master/slave pairs. The master and slave share their state either though a database or a shared filesystem so you need to duplicate that setup.
Create 2 master slave pairs, and configure so called "network connectors" between the 2 pairs. This will double your performance without risk of loosing messages.
See http://activemq.apache.org/networks-of-brokers.html
This answer relates to an version of the question before the Camel details were added.
It is not immediately clear what exactly it is that you want to load balance and why. Messages across consumers? Producers across brokers? What sort of concern are you trying to address?
In general you should avoid using networks of brokers unless you are trying to address some sort of geographical use case, have too many connections for a signle broker to handle, or if a single broker (which could be a pair of brokers configured in HA) is not giving you the throughput that you require (in 90% of cases it will).
In a broker network, each node has its own store and passes messages around by way of a mechanism called store-and-forward. Have a read of Understanding broker networks for an explanation of how this works.
ActiveMQ already works as a kind of load balancer by distributing messages evenly in a round-robin fashion among the subscribers on a queue. So if you have 2 subscribers on a queue, and send it a stream of messages A,B,C,D; one subcriber will receive A & C, while the other receives B & D.
If you want to take this a step further and group related messages on a queue so that they are processed consistently by only one subscriber, you should consider Message Groups.
Adding consumers might help to a point (depends on the number of cores/cpus your server has). Adding threads beyond the point your "Camel server" is utilizing all available CPU for the business processing makes no sense and can be conter productive.
Adding more ActiveMQ machines is probably needed. You can use an ActiveMQ "network" to communicate between instances that has separated persistence files. It should be straight forward to add more brokers and put them into a network.
Make sure you performance test along the road to make sure what kind of load the broker can handle and what load the camel processor can handle (if at different machines).
When you do persistent messaging - you likely also want transactions. Make sure you are using them.
If all running brokers use the same store file or tx-supported database for persistence, then only the first broker to start will be active, while others are in standby mode until the first one loses its lock.
If you want to loadbalance your persistence, there were two way that we could try to do:
configure several brokers in network-bridge mode, then send messages
to any one and consumer messages from more than one of them. it can
loadbalance the brokers and loadbalance the persistences.
override the persistenceAdapter and use the database-sharding middleware
(such as tddl:https://github.com/alibaba/tb_tddl) to store the
messages by partitions.
Your first step is to increase the number of workers that are processing from ActiveMQ. The way to do this is to add the ?concurrentConsumers=10 attribute to the starting URI. The default behaviour is that only one thread consumes from that endpoint, leading to a pile up of messages in ActiveMQ. Adding more brokers won't help.
Secondly what you appear to be doing could benefit from a Staged Event-Driven Architecture (SEDA). In a SEDA, processing is broken down into a number of stages which can have different numbers of consumer on them to even out throughput. Your threads consuming from ActiveMQ only do one step of the process, hand off the Exchange to the next phase and go back to pulling messages from the input queue.
You route can therefore be rewritten as 2 smaller routes:
from("activemq:input?concurrentConsumers=10").id("FirstPhase")
.process(businessInvokerOne)
.to("seda:invokeSecondProcess");
from("seda:invokeSecondProcess?concurentConsumers=20").id("SecondPhase")
.process(businessInvokerTwo)
.to("activemq:output");
The two stages can have different numbers of concurrent consumers so that the rate of message consumption from the input queue matches the rate of output. This is useful if one of the invokers is much slower than another.
The seda: endpoint can be replaced with another intermediate activemq: endpoint if you want message persistence.
Finally to increase throughput, you can focus on making the processing itself faster, by profiling the invokers themselves and optimising that code.