when the thread will suspend a suspend-function? - kotlin

I am just learning about Kotlin's Coroutines, and I'm curious when the thread will suspend a suspend-function. In Golang, we know it will suspend a goroutine in several cases; calling another goroutine, block-syscall, channeling, gc. Is Kotlin's coroutine the same?

In Kotlin the rule is extremely simple: a coroutine never suspends on its own, you must explicitly write code to make it suspend. In most usage scenarios this code is buried within the functions you call, though. Here's a simple example:
val result = suspendCoroutine { continuation ->
makeAsyncCall(onComplete = { continuation.resume(it) })
}

Related

Difference between withContext and suspendCancellableCoroutine

I'm new to coroutines
This is a popular example:
suspend fun findBigPrime(): BigInteger =
withContext(Dispatchers.IO) {
BigInteger.probablePrime(4096, Random()))
}
However, it could be written as well as:
suspend fun findBigPrime(): BigInteger =
suspendCancellableCoroutine {
it.resume(BigInteger.probablePrime(4096, Random()))
}
What's the real difference?
What's the real difference?
There's hardly any relationship, in fact.
suspendCancellableCoroutine {
it.resume(BigInteger.probablePrime(4096, Random()))
}
This does nothing but add useless overhead above the simple direct call
BigInteger.probablePrime(4096, Random())
If you resume the continuation while still inside the suspendCancellableCoroutine block, the coroutine doesn't suspend at all.
withContext(Dispatchers.IO) {
BigInteger.probablePrime(4096, Random()))
}
This suspends the coroutine and launches an internal coroutine on another thread. When the internal coroutine completes, it resumes the current one with the result.
Use of suspendCancellableCoroutine here is a "BIG NO".
withContext changes the context on which the block (coroutine) will run, here the Dispatcher which dispatches the coroutine to a specified thread is overridden. While the suspendCoroutine/suspendCancellableCoroutine are used for wrapping asynchronous callbacks which does not block the thread instead they run on thread of their own.
Usually work on the suspendCoroutine/suspendCancellableCoroutine is non-blocking and gets completed quite quickly and the continuation is resumed after the work has completed in a non-blocking way maybe in other thread or so.
If you put blocking code in there the concept of coroutine is lost, it will just going to block the thread it is running on.
Use of suspendCoroutine/suspendCancellableCoroutine:
// This function immediately creates and starts thread and returns
fun findBigPrimeInNewThread(after: (BigInteger) -> Unit) {
Thread {
BigInteger.probablePrime(4096, Random()).also(after)
}
}
// This just wraps the async function so that when the result is ready resume the coroutine
suspend fun findBigPrime(): BigInteger =
suspendCancellableCoroutine { cont ->
findBigPrimeInNewThread {
cont.resume(it)
}
}

How to enforce that a function should be called with a coroutine?

Is there a way to make it so that a function has to be called with a coroutine in an IO scope?
I guess I can do
suspend fun f() {}
But maybe there is an annotation for this?
What if I still want the function to be blocking? Because inside the function I am usually doing db calls.
If it's a suspend function, it will certainly only be callable from coroutines.
As for requiring it to be called in an IO scope, you could just install the IO dispatcher yourself:
suspend fun f() = withContext(Dispatchers.IO) { ... }
...or, if you really wanted to just reject any user who wasn't using the IO dispatcher, you could write require(coroutineContext[CoroutineInterceptor] == Dispatchers.IO), but I'd certainly find that very strange as a user.

How to propagate kotlin coroutine context through reflective invocation of suspended function?

UPDATE2 - yep, the following extension function does what you need.
suspend fun Method.invokeSuspend(obj: Any, vararg args: Any?): Any? =
kotlinFunction!!.callSuspend(obj, *args)
be nice if the lib doc for callSuspend
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.full/call-suspend.html
explicitly stated that the receiver if applicable is first in the vararg list. but i'm happy its now possible to do it in 1.3. And it's baked into the Kotlin API now so you longer have to the reflective hack to pull out the backing continuation and invoke the transformed java method through the Java reflection API.
UPDATE - i can see from another stackoverflow question that Kotlin 1.3 has KFunction.callSuspend, anyone know if that can be used in my case and invoked against a reflective method? In which case how can it be called?
val ret = method.kotlinFunction?.callSuspend(/*???*/)
how do you bind the target object? method.invoke takes the target followed by vargargs for the method parameters, but callSuspend only takes varargs.
or is callSuspend just for standalone functions?
I'm writing a fairly sophisticated remoting framework in kotlin where a class implementing an interface (with annotation similar to JAX_RS) can be efficiently remoted over several different transports including HTTP2 and VERTX, and called through a stub proxy implementing the interface so its completely transparent to the calling code. There are reasons i'm writing a custom implementation which i don't need to get into. Everything's based on suspending functions and coroutines - which are awesome.
In order to do this the kotlin interface is used to auto generate a transparent proxy stub on the client side and a dispatcher on the endpoint side. The dispatcher automatically enforces security by looking at security annotations on the interface methods. Identity data can be accessed from the implementation code through the coroutine context.
Everything's working, except the dispatcher obviously has to use reflection to invoke the suspended function on the implementing class. I cannot figure out how to propagate the coroutine context across the reflective suspended invocation. Not only that, the default ThreadPool for coroutines doesn't seem to be used either - instead it uses some fork-join pool.
Coroutines are implemented great in my opinion, but when you start doing the low level stuff you can't avoid the ugly underbelly. The other thing i noticed is a default method in a kotlin interface doesn't map to a default method in the underlying generated java interface. Which also caused my some grief, but thats a seperate issue.
Anyway - if anyone knows how to fix this final issue? Thanks.
// attach an extension function to
suspend fun Method.invokeSuspend(obj: Any, vararg args: Any?): Any? =
suspendCoroutine { cont ->
println("in thread "+Thread.currentThread().name)
val ret=invoke(obj, *args, cont)
cont.resume(ret)
}
//....
withContext(kc) {
// kc NOT propagated through method invocation...
meth.invokeSuspend(rec.ob, args)!!
}
suspend fun Method.invokeSuspend(obj: Any, vararg args: Any?): Any? =
suspendCoroutine { cont ->
val ret=invoke(obj, *args, cont)
cont.resume(ret)
}
There are two main mistakes here:
you expect invoke() to return the value that you must resume the continuation with
you call the user-level suspendCoroutine function instead of the low-level suspendCoroutineUninterceptedOrReturn
Behind these mistakes there may be a deeper misunderstanding of the coroutine suspension mechanism, so let me try to elaborate on that. This is a way to correct your code, taken from the implementation of KCallable.callSuspend:
suspend fun Method.invokeSuspend(obj: Any, vararg args: Any?): Any? =
suspendCoroutineUninterceptedOrReturn { cont -> invoke(obj, *args, cont) }
Note the main feature of this code: it just passes the continuation to the invoked function and never tries to resume it with the result of the invocation.
Now, how does this manage to work? There are two factors:
If the called suspendable function doesn't actually suspend, it will simply return its result, and this will become the result of your invokeSuspend function.
If it does suspend, when it resumes, the suspendable function will on its own use the continuation you passed in and invoke its resume method with the result.
If it decides to suspend, the suspendable function immediately returns the special COROUTINE_SUSPENDED constant. suspendCoroutineUninterceptedOrReturn interprets this value as necessary to cooperate with the coroutine suspension mechanism. Specifically, it makes your function return the same constant to its caller (it does this whether or not your code actually returns the result of the suspendable function). This way the constant propagates all the way up the call stack until it reaches the non-suspendable function that started the coroutine. This is typically an event loop, and now it will be able to go on processing the next event.
how do you bind the target object? method.invoke takes the target followed by vargargs for the method parameters, but callSuspend only takes varargs.
The answer to this is documented under KCallable.parameters:
/**
* Parameters required to make a call to this callable.
* If this callable requires a `this` instance or an extension receiver parameter,
* they come first in the list in that order.
*/
public val parameters: List<KParameter>
So this is how simple it is to implement your invokeSuspend in terms of KCallable.callSuspend:
suspend fun Method.invokeSuspend(obj: Any, vararg args: Any?): Any? =
kotlinFunction!!.callSuspend(obj, *args)
Repository.kt
suspend fun getTestRepository(): X
suspend fun getTestWithParamRepository(a: String): X
Service.kt
fun getTestService(lambda: suspend () -> X) { //... }
Using
Suspend function 'getTestWithParamRepository' should be called only
from a coroutine or another suspend function
getTestService(repository::getTestRepository }
// Surround with lambda
getTestService { repository.getTestWithParamRepository("") }
GL

does IO in coroutines cause suspension?

Inside a coroutine I am doing a http-request with OkHttpClient. The request is done from a function that has the suspend keyword:
suspend fun doSomethingFromHttp(someParam:String): Something {
...
val response = HttpReader.get(url)
return unmarshalSomething(response)!!
}
I assume that the function can be suspended on entry since it has the suspend keyword, but will the coroutine also be suspended when doing the http-request? What about other kinds of blocking IO?
There's no automagic going on with Kotlin coroutines. If you call a blocking function like HttpReader.get(), the coroutine won't be suspended and instead the call will block. You can easily assure yourself that a given function won't cause the coroutine to suspend: if it's not a suspend function, it cannot possibly do it, whether or not it's called from a suspend function.
If you want to turn an existing blocking API into non-blocking, suspendable calls, you must submit the blocking calls to a threadpool. The easiest way to achieve it is as follows:
val response = withContext(Dispatchers.IO) { HttpReader.get(url) }
withContext is a suspend fun that will suspend the coroutine, submit the provided block to another coroutine dispatcher (here IO) and resume when that block is done and has come up with its result.
You can also easily instantiate your own ExecutorService and use it as a coroutine dispatcher:
val myPool = Executors.newCachedThreadPool().asCoroutineDispatcher()
Now you can write
val response = withContext(myPool) { HttpReader.get(url) }
This PR has example code for proper OkHttp coroutines support
https://github.com/square/okhttp/pull/4129/files
It uses the thread pools of OkHttp to do the work. The key bit of code is this generic library code.
suspend fun OkHttpClient.execute(request: Request): Response {
val call = this.newCall(request)
return call.await()
}
suspend fun Call.await(): Response {
return suspendCancellableCoroutine { cont ->
cont.invokeOnCancellation {
cancel()
}
enqueue(object : Callback {
override fun onFailure(call: Call, e: IOException) {
if (!cont.isCancelled) {
cont.resumeWithException(e)
}
}
override fun onResponse(call: Call, response: Response) {
if (!cont.isCancelled) {
cont.resume(response)
}
}
})
}
}
There are two types of IO libraries in JAVA world, using IO or NIO.
You can find more documentation at https://dzone.com/articles/high-concurrency-http-clients-on-the-jvm
The ones using NIO, can theoretically provide true nonblocking suspension unlike IO ones which only offload the task to a separate thread.
NIO uses some dispatcher threads in the JVM to handle the input output sockets using multiplexing (Reactor design pattern). The way it works is, we request the NIO/dispatchers to load/unload something and they return us some future reference. This code can be turned into coroutines easily.
For IO based libraries, coroutine implementation is not true non blocking. It actually blocks one of the threads just like in Java, however the general usage pattern is, to use Dispatcher.IO which is a threadpool for such blocking IO tasks.
Instead of using OkHttpClient, I would recommend using https://ktor.io/docs/client.html

COROUTINE_SUSPENDED and suspendCoroutineOrReturn in Kotlin

The idea of coroutines in kotlin was to abstract the notion of suspension and callbacks and write simple sequential code. You never need to worry if the coroutine is suspended or not, similar to threads.
What is the purpose of suspendCoroutineOrReturn and COROUTINE_SUSPENDED and in what case would you use them?
The suspendCoroutineOrReturn and COROUTINE_SUSPENDED intrinsics were introduced very recently in 1.1 to address the particular stack overflow problem.
Here is an example:
fun problem() = async {
repeat(10_000) {
await(work())
}
}
Where await simply waits for completion:
suspend fun <T> await(f: CompletableFuture<T>, c: Continuation<T>): Unit {
f.whenComplete { value, exception -> // <- await$lambda
if (exception != null) c.resumeWithException(exception) else
c.resume(value)
}
}
Let's have a look at the case when work doesn't really suspend, but returns the result immediately (for example, cached).
The state machine, which is what coroutines are compiled into in Kotlin, is going to make the following calls:
problem$stateMachine, await, CompletableFuture.whenComplete, await$lambda, ContinuationImpl.resume, problem$stateMachine, await, ...
In essence, nothing is ever suspended and the state machine invokes itself within the same execution thread again and again, which ends up with StackOverflowError.
A suggested solution is to allow await return a special token (COROUTINE_SUSPENDED) to distinguish whether the coroutine actually did suspend or not, so that the state machine could avoid stack overflow.
Next, suspendCoroutineOrReturn is there to control coroutine execution. Here is its declaration:
public inline suspend fun <T> suspendCoroutineOrReturn(crossinline block: (Continuation<T>) -> Any?): T
Note that it receives a block that is provided with a continuation. Basically it is a way to access the Continuation instance,
which is normally hidden away and appears only during the compilation. The block is also allowed to return any value or COROUTINE_SUSPENDED.
Since this all looks rather complicated, Kotlin tries to hide it away and recommends to use just suspendCoroutine function, which internally does all the stuff mentioned above for you.
Here's the correct await implementation which avoids StackOverflowError (side note: await is shipped in Kotlin lib, and it's actually an extension function, but it's not that important for this discussion)
suspend fun <T> await(f: CompletableFuture<T>): T =
suspendCoroutine { c ->
f.whenComplete { value, exception ->
if (exception != null) c.resumeWithException(exception) else
c.resume(value)
}
}
But if you ever want to take over fine-graned control over coroutine continuation, you should call suspendCoroutineOrReturn and return COROUTINE_SUSPENDED whenever an external call is made.