Why do the default Raku if/while/loop/when blocks all have the same identity value (.WHICH)? - raku

Except for the block where I declared a signature, all of the blocks have the same identity value, and claim to be declared on line 1 regardless of where they occur. Could anyone shed some light as to why this is the case?
say 「Let's look at some blocks…」;
if True {
&?BLOCK.say;
}
while True {
&?BLOCK.say;
last;
}
loop {
&?BLOCK.say;
last;
}
if True -> | {
「I'm different!」.say;
&?BLOCK.say;
}
when ?True {
&?BLOCK.say;
}

First of all: .say does NOT give you the identity value, because that calls the .gist method on the given expression. For the identity value, you need to call the .WHICH method. Fortunately, the Block.gist method does include the identity value in its stringification. But that is not guaranteed to be the case for all objects.
What you see there, is the static optimizer at work: because nothing is happening inside the block, it can be discarded. In the one case where it is different (where you specified an alternate signature), it is different. If you run this script with --optimize=0 or --optimize=1, then all blocks will have different identity values.
I guess you could call it an issue that mentioning &?BLOCK does not inhibit the static optimizer from flattening the scope. On the other hand, you could also call this a case of DIHWIDT (Doctor, It Hurts When I Do This). So don't do that then :-)
UPDATE: it is the different signature that made the difference. Daniel Mita++

Related

Using Kotlin's scope functions in not exhaustive with / when

I'm pretty new with Kotlin and I'm trying to figure out Kotlin's scope functions.
My code looks like this:
with(something) {
when {
equals("test") -> var1 = "test123"
startsWith("test2") -> var2 = "test456"
contains("test3") -> myNullableVar?.let { it.var3 = "test789" }
}
}
So before I entered the third check with the .let function my with function does not need to be exhaustive (I'm not returning something, I'm only doing assignments). In my third check I'm using .let as a null-check ... but only for an assignment of it.var3 (if it is not null). I don't need to return anything while I know that Kotlin's .let function returns the result of the body by standard.
Nevertheless now my with/when needs to be exhaustive otherwise it won't compile anymore.
This got me thinking and trying out different things. I found these ways to solve this issue:
I can add an else to my with/when so it becomes exhaustive but actually I don't need an else and I don't want to use it in this case.
I can add another .let, so it looks like this: myNullableVar?.let { it.var3 = "test789" }.let{} .... but this looks kinda hacky to me. Is it supposed to work like this?
Use If(xy==null){...}else{...} stuff but I thought I can solve this with Kotlin differently
Because I'm new with Kotlin I'm not really sure how to handle this case properly. I would probably just go with my second idea because "it works". Or should I don't use .let for null-checks? Add another empty .let{}? Or did I not get the null-safety concept at all? I feel a little bit lost here. Thanks for any help.
This seems to be an unfortunate combination of features…
A when can be non-exhaustive only when it doesn't return a value.  The problem is that the with() function does return a value.  And since the when is at the bottom, its value is what gets returned, so in this case it must be exhaustive.
So why doesn't it insist on an else branch even if you omit the "test3" branch?  That's because assignments don't yield a value.  (They evaluate to Unit, which is Kotlin's special type for functions that don't return a useful value.)  If every branch gives Unit, then Kotlin seems* to be happy to infer a default branch also giving Unit.
But the "test3" branch returns something else — the type of myNullableVar.  So what type does the when infer?  The nearest common supertype of that type and Unit, which is the top type Any?.  And now it needs an explicit else branch!
So what to do?
You've found a few options, none of which is ideal.  So here are a few more, ditto!
You could return an explicit Unit from that branch:
contains("test3") -> { myNullableVar?.let { it.var3 = "test789" }; Unit }
You could return an explicit Unit from the with():
contains("test3") -> myNullableVar?.let { it.var3 = "test789" }
}
Unit
}
You could give an explicit type for the with(). (It has two type parameters, so you'd need to give both, starting with the type of its parameter):
with<String, Unit>("abc") {
I haven't found a single obvious best answer, I'm afraid…
And to answer your last question: yes, ?.let{ is perfectly idiomatic and common for null checks.  In this particular case, replacing it with an if happens to solve the type problem:
contains("test3") -> { if (myNullableVar != null) myNullableVar.var3 = "test789" }
But as well as being long-winded, if myNullableVar is a property and not a local variable, then it opens up a race condition (what if another thread sets it to null in between the test and the assignment?) so the compiler would complain — which is exactly why people use let instead!
(* I can't find a reference for this behaviour.  Is there an official word on it?)

Execution order of kotlin `.also {}` function

I know .also { } is intended to be used for logging. That is exactly what I want to do.
var count = 1
count++.also { print("count is $it") }
In this example I expect the log to be
count is 2
But it actually prints:
count is 1
Is there a way different way to use also here?
Your problem is not related to also.
You are using the postfix (count++) increment operator which returns the value of a variable before it has been incremented, which is 1.
If you use the prefix increment (++count) operator it will first assign the new value and then return it, in this case 2. Note that you need paratheses in this case:
(++count).also { print("count is $it") }
You mentioned that also is intended for logging. I don't think that is true. It is merelely a scope function which offers the receiver as it (or as you name it) inside the labmda and returns the receiver.

Mixing-in roles in traits apparently not working

This example is taken from roast, although it's been there for 8 years:
role doc { has $.doc is rw }
multi trait_mod:<is>(Variable $a, :$docced!) {
$a does doc.new(doc => $docced);
}
my $dog is docced('barks');
say $dog.VAR;
This returns Any, without any kind of role mixed in. There's apparently no way to get to the "doc" part, although the trait does not error. Any idea?
(This answer builds on #guifa's answer and JJ's comment.)
The idiom to use in variable traits is essentially $var.var.VAR.
While that sounds fun when said aloud it also seems crazy. It isn't, but it demands explanation at the very least and perhaps some sort of cognitive/syntactic relief.
Here's the brief version of how to make some sense of it:
$var makes sense as the name of the trait parameter because it's bound to a Variable, a compiler's-eye view of a variable.
.var is needed to access the user's-eye view of a variable given the compiler's-eye view.
If the variable is a Scalar then a .VAR is needed as well to get the variable rather than the value it contains. (It does no harm if it isn't a Scalar.)
Some relief?
I'll explain the above in more detail in a mo, but first, what about some relief?
Perhaps we could introduce a new Variable method that does .var.VAR. But imo this would be a mistake unless the name for the method is so good it essentially eliminates the need for the $var.var.VAR incantation explanation that follows in the next section of this answer.
But I doubt such a name exists. Every name I've come up with makes matters worse in some way. And even if we came up with the perfect name, it would still barely be worth it at best.
I was struck by the complexity of your original example. There's an is trait that calls a does trait. So perhaps there's call for a routine that abstracts both that complexity and the $var.var.VAR. But there are existing ways to reduce that double trait complexity anyway, eg:
role doc[$doc] { has $.doc is rw = $doc}
my $dog does doc['barks'];
say $dog.doc; # barks
A longer explanation of $var.var.VAR
But $v is already a variable. Why so many var and VARs?
Indeed. $v is bound to an instance of the Variable class. Isn't that enough?
No, because a Variable:
Is for storing metadata about a variable while it's being compiled. (Perhaps it should have been called Metadata-About-A-Variable-Being-Compiled? Just kidding. Variable looks nice in trait signatures and changing its name wouldn't stop us needing to use and explain the $var.var.VAR idiom anyway.)
Is not the droid we are looking for. We want a user's-eye view of the variable. One that's been declared and compiled and is then being used as part of user code. (For example, $dog in the line say $dog.... Even if it were BEGIN say $dog..., so it ran at compile-time, $dog would still refer to a symbol that's bound to a user's-eye view container or value. It would not refer to the Variable instance that's only the compiler's-eye view of data related to the variable.)
Makes life easier for the compiler and those writing traits. But it requires that a trait writer accesses the user's-eye view of the variable to access or alter the user's-eye view. The .var attribute of the Variable stores that user's-eye view. (I note the roast test has a .container attribute that you omitted. That's clearly now been renamed .var. My guess is that that's because a variable may be bound to an immutable value rather than a container so the name .container was considered misleading.)
So, how do we arrive at $var.var.VAR?
Let's start with a variant of your original code and then move forward. I'll switch from $dog to #dog and drop the .VAR from the say line:
multi trait_mod:<is>(Variable $a, :$docced!) {
$a does role { has $.doc = $docced }
}
my #dog is docced('barks');
say #dog.doc; # No such method 'doc' for invocant of type 'Array'
This almost works. One tiny change and it works:
multi trait_mod:<is>(Variable $a, :$docced!) {
$a.var does role { has $.doc = $docced }
}
my #dog is docced('barks');
say #dog.doc; # barks
All I've done is add a .var to the ... does role ... line. In your original, that line is modifying the compiler's-eye view of the variable, i.e. the Variable object bound to $a. It doesn't modify the user's-eye view of the variable, i.e. the Array bound to #dog.
As far as I know everything now works correctly for plural containers like arrays and hashes:
#dog[1] = 42;
say #dog; # [(Any) 42]
say #dog.doc; # barks
But when we try it with a Scalar variable:
my $dog is docced('barks');
we get:
Cannot use 'does' operator on a type object Any.
This is because the .var returns whatever it is that the user's-eye view variable usually returns. With an Array you get the Array. But with a Scalar you get the value the Scalar contains. (This is a fundamental aspect of P6. It works great but you have to know it in these sorts of scenarios.)
So to get this to appear to work again we have to add a couple .VAR's as well. For anything other than a Scalar a .VAR is a "no op" so it does no harm to cases other than a Scalar to add it:
multi trait_mod:<is>(Variable $a, :$docced!) {
$a.var.VAR does role { has $.doc = $docced }
}
And now the Scalar case also appears to work:
my $dog is docced('barks');
say $dog.VAR.doc; # barks
(I've had to reintroduce the .VAR in the say line for the same reason I had to add it to the $a.var.VAR ... line.)
If all were well that would be the end of this answer.
A bug
But something is broken. If we'd attempted to initialize the Scalar variable:
my $dog is docced('barks') = 42;
we'd see:
Cannot assign to an immutable value
As #guifa noted, and I stumbled on a while back:
It seems that a Scalar with a mixin no longer successfully functions as a container and the assignment fails. This currently looks to me like a bug.
Not a satisfactory answer but maybe you can progress from it
role doc {
has $.doc is rw;
}
multi trait_mod:<is>(Variable:D $v, :$docced!) {
$v.var.VAR does doc;
$v.var.VAR.doc = $docced;
}
say $dog; # ↪︎ Scalar+{doc}.new(doc => "barks")
say $dog.doc;  # ↪︎ barks
$dog.doc = 'woofs'; #
say $dog; # ↪︎ Scalar+{doc}.new(doc => "woofs")
Unfortunately, there is something off with this, and applying the trait seems to cause the variable to become immutable.

What is the difference between not-null checks in Kotlin?

There are some ways to fulfill a null-checking in Kotlin:
1.
if(myVar != null) {
foo(myVar)
}
2.
myVar?.let {
foo(it)
}
3.
myVar?.run {
foo(this)
}
What are the difference between these ways?
Are there any reasons (performance, best practice, code style etc.) why I should prefer on way over the other?
!! is to tell the compiler that I am sure the value of the variable is not null, and if it is null throw a null pointer exception (NPE) where as ?. is to tell the compiler that I am not sure if the value of the variable is null or not, if it is null do not throw any null pointer.
Another way of using a nullable property is safe call operator ?.
This calls the method if the property is not null or returns null if that property is null without throwing an NPE (null pointer exception).
nullableVariable?.someMethodCall()
All three code are behave same null check in operation-wise.
?. is used for chain operations.
bob?.department?.head?.name // if any of the properties in it is null it returns null
To perform a chain operation only for non-null values, you can use the safe call operator together with let
myVar?.let {
foo(it)
}
the above code is good for code style and performance
more details refer Null Safety
The ways 2 and 3 are more idiomatic for Kotlin. Both functions are quite similar. There is little difference with argument passing.
For example, we have a nullable variable:
var canBeNull: String? = null
When you working with T.run you work with extension function calling and you pass this in the closure.
canBeNull?.run {
println(length) // `this` could be omitted
}
When you call T.let you can use it like lambda argument it.
canBeNull?.let {
myString -> println(myString.length) // You could convert `it` to some other name
}
A good article about Kotlin standard functions.
All three are roughly equivalent.
The if case is more like most other languages, and so many developers may find it easier to read.
However, one difference is that the if case will read the value of myVar twice: once for the check, and again when passing it to foo(). That makes a difference, because if myVar is a property (i.e. something that could potentially be changed by another thread), then the compiler will warn that it could have been set to null after the check. If that's a problem (e.g. because foo() expects a non-null parameter), then you'll need to use one of the other cases.
For that reason, the let case has become fairly common practice in Kotlin. (The run case does just about the same thing, but for some reason isn't as popular for this sort of thing. I don't know why.)
Another way around it is to assign myVar to a temporary value, test that, and then use that. That's also more like other languages, but it's more verbose; many people prefer the conciseness of the let case — especially when myVar is actually a complicated expression.
The examples in your question don't show the true reason to decide.
First of all, since you're not using the return value of foo, you should use neither let nor run. Your choice is between also and apply.
Second, since you already have the result you want to null-check in a variable, the difference fades. This is a better motivating example:
complexCall(calculateArg1(), calculateArg2())?.also {
results.add(it)
}
as opposed to
val result = complexCall(calculateArg1(), calculateArg2())
if (result != null) {
results.add(result)
}
The second example declares an identifier, result, which is now available to the rest of the lexical scope, even though you're done with it in just one line.
The first example, on the other hand, keeps everything self-contained and when you go on reading the rest of the code, you are 100% confident that you don't have to keep in mind the meaning of result.
Kotlin have new features with NullPoint-Exception as Compare to Java.
Basically When we do Coding in Java , then we have to Check with !! in every Flied.
But in Kotlin, it is Easy way to Implement First
as Like,
Suppose, in Kotlin
var response:Json?=Null
response:Json?.let {
this part will handle automatic if response is Not Null....then this Block start Executing }?.run {
This is Nullable But, where we Can put Warring } So, I am Suggest you Guys to Start Work in Kotlin with this Features Provided by Kotlin.
(Flied)?.let { Not Null Value Comes Under }?.run{ Null Value Code }
This will Handle to NullPoint Exception or Protect You App for Crash
What you want to achieve
What you want to achieve is that the Kotlin compiler does a smart cast on the variable you are working with.
In all of your three examples, the compiler can do that.
Example:
if(myVar != null) {
foo(myVar) // smart cast: the compiler knows, that myVar can never be null here
}
The choice
Which one of the options to use, is really a matter of style. What you should not do is mix it up to often. Use one and stick to it.
You don't need to worry about performance since let and run are inlined (see inline function). This means that their code (body) is copied to the call site at compile time so there is no runtime overhead.

Remove temp variable in code with switch-block

Have such code in project:
Cookie CookieCreate(CookiesTypes type)
{
Cookie user_cookie = null;
switch (type)
{
case CookiesTypes.SessionId:
user_cookie = new Cookie("session_id", Convert.ToBase64String(Guid.NewGuid().ToByteArray()));
break;
case CookiesTypes.ClientIp:
HttpListenerContext context = listener.GetContext();
user_cookie = new Cookie("client_ip", context.Request.RemoteEndPoint.ToString());
break;
}
return user_cookie;
}
I understand, that temp variable user_cookie is bad syntax... I've tried to use return in switch-block both in two cases, but I've got an compiler erros, when I tried so:
Pseudo-Code:
case ... :
//some action
return var;
Having a temporary that is set in a case of a switch statement to be returned at the end is not a bad syntax, it is also the only choice if you need to do something on user_cookie for all cases before returning it.
The only problem is see in your code is the lack of a default case which is indeed useful because:
either you can require a default case (so that you do something in that situation)
either the switch should never reach a default case (so you should manage that situation in a special way, for example by throwing an exception)
If you blindly remove temporary variable and return the value directly like you are trying to do, then it gives you a compiler error probably because not all your branches do return something (because you are lacking a default clause or lacking a return after the switch).
Despite the fact that there's nothing inherently wrong with temporary variables, if you really want to avoid it you just need to ensure that all code paths return something.
That means (for example) changing your current return to:
return null;
and having both cases contain:
return new Cookie (whatever);
instead of the assignment.