I'm using YOLOv3 and YOLOv3-Tiny from AlexeyAB's fork of Darknet. I understand that the image size must be a multiple of 32. And that batch divided by subdivisions determines the number of images that will be processed in parallel.
For example, the batch size in the default yolov3.cfg file is 64, and subdivision is 16, meaning 4 images will be loaded at once, and it will take 16 of these mini batches to complete one iteration.
What I don't see documented in the wiki:
Are there restrictions on these values? Do they need to be a multiple of 16? Power of 2? Can I have batch=25 and subdivisions=5?
I believe it is not a must to be a power of 2, the important thing is that batch must be divisible by subdivisions as the code uses small batches of batch / subdivisions as you can see in parcer.c:
net->batch /= subdivs;
then the number of images processed in every step is defines as in detector.c:
int imgs = net.batch * net.subdivisions * ngpus;
Although the defined BLOCK in dark_cuda.h is 512, the used num_blocks in the kernels doesn't have to be divisible by 2 as can be seen in dark_cuda.c:
int get_number_of_blocks(int array_size, int block_size)
{
return array_size / block_size + ((array_size % block_size > 0) ? 1 : 0);
}
I think the only problem could be a performance issue as CUDA runs in wraps of 32, so any number not a multiple of 2 may cause part of the used memory to not be fully utilized.
However, I recommend that you try training your network with these parameters to confirm that it works as desired.
Related
I'm working on a heightmap erosion compute shader in unity, where each point on the map is eroded separately. This is working well for small maps, but the project I'm working on requires 4096x4096 maps. This means 4096^2 = 16777216 points to simulate. With the default thread dimensions of [64,1,1], this creates 262144 thread groups, way more than the allowed limit of 65535.
My question is:
Can I simply raise the thread dimensions, and what do I have to consider in terms of performance when I do?
Is it maybe possible to simply run the shader multiple times, with different ranges of heightmap coordinates?
This is my first time working with shaders. The tutorials I've seen online quickly go too in depth into gpu hardware specifications, so I didn't pick up much from that.
With 64x64 threads per work group, you can Dispatch 64x64 work groups to do what you need : remember that 64x64 threads will be invoked for each work group you dispatch, so you will have 64x64 work groups x 64x64 threads = 4096 workgroups x 4096 threads executed.
computeShader.Dispatch(computeShader.FindKernel("kernel"), 64, 64, 1);
[numthreads(64, 64, 1)]
void kernel(uint3 id : SV_DispatchThreadID)
{
// ...
// 0 <= id.x < 4096
// 0 <= id.y < 4096
}
As for the performance implication, the general answer is "try it out !" : run your kernel with different sizes for threads and work groups. The results may vary depending on your computations and on your hardware.
But, in case you need to bypass the 65535 limit, you can use DispatchIndirect. Basically, it's the same as Dispatch but the arguments are passed through a ComputeBuffer.
ComputeBuffer argsBuffer = new ComputeBuffer(3, sizeof(uint), ComputeBufferType.IndirectArguments);
uint[] args = { 64, 64, 1 }; // work groups
argsBuffer.SetData(args);
computeShader.DispatchIndirect(computeShader.FindKernel("kernel"), argsBuffer);
Ps : working on a GPU requires understanding its architecture because (1) you work at a low level, close to the hardware and many of the features you work with are actually hardware implemented (e.g. textures); (2) you want to make the best performances out of your programs (e.g. make best use of blocks and warps and cache ...) ;)
Hi,I have a question that, how can I make predict with unfixed input data? I will try to describe in detail clear:
I use MTCNN for face detection(it's ok unfamiliar with that), and it employs 3 networks: PNet, RNet, ONet. PNet detects a mass of proposal face bounding boxes, then these boxes are coarse-to-fine by the rest net one after another, finally get precise face bbox(s). When taking an image as input to PNet, image's size is unfixed, and the output proposal box number from PNet is also unfixed, so as RNet, ONet. Reference to another MTCNN code I set a large data_shapes(e.g., image size, batch size) when I bind the module, and initialize all to zero,then make predict. That works though, Isn't that a redundant calculation? (Question 1)
PNet:
max_img_w=1000
max_img_h=1000
sym, arg_params, aux_params = mx.model.load_checkpoint(‘det1’, 0)
self.PNets = mx.mod.Module(symbol=sym, context=ctx,label_names=None)
self.PNets.bind(data_shapes=[(‘data’, (1, 3, max_img_w, max_img_h))],for_training=False)
self.PNets.set_params(arg_params,aux_params)
RNet
sym, arg_params, aux_params = mx.model.load_checkpoint(‘det2’, 0)
self.RNet = mx.mod.Module(symbol=sym, context=ctx,label_names=None)
self.RNet.bind(data_shapes=[(‘data’, (2048,3, 24, 24))],for_training=False)
self.RNet.set_params(arg_params,aux_params,allow_missing=True)
ONet
sym, arg_params, aux_params = mx.model.load_checkpoint(‘det3’, 0)
self.ONet = mx.mod.Module(symbol=sym, context=ctx,label_names=None)
self.ONet.bind(data_shapes=[(‘data’, (256, 3, 48, 48))],for_training=False)
self.ONet.set_params(arg_params,aux_params,allow_missing=True)
And I try mx.mod.Module.reshape before predict, which will adjust data'shape according to last network's output, but I get this error:(Question 2)
AssertionError: Shape of unspecified array arg:prob1_label changed. This can cause the new executor to not share parameters with the old one. Please check for error in the network. If this is intended, set partial_shaping=True to suppress this warning.
One more thing is that The MTCNN code (https://github.com/pangyupo/mxnet_mtcnn_face_detection) primary use deprecated function to load models:
self.PNet = mx.model.FeedForward.load(‘det1’,0)
One single line to work with arbitrary data_shapes, why this function be deprecated..?(Question 3)
I found a little difference that after load model, FeedFroward takes 0MB memory before make one predict, but mx.mod.Module takes up memory once loaded, and increase obviously after making one prediction.
You can use MXNet imperative API Gluon and that will let you use different batch-sizes.
If like in this case, your model was trained using the symbolic API or has been exported in the serialized MXNet format ('-0001.params', '-symbol.json' for e.g), you can load it in Gluon that way:
ctx = mx.cpu()
sym = mx.sym.load_json(open('det1-symbol.json', 'r').read())
PNet = gluon.nn.SymbolBlock(outputs=sym, inputs=mx.sym.var('data'))
PNet.load_params('det1-0001.params', ctx=ctx)
Then you can use it the following way:
# a given batch size (1)
data1 = mx.nd.ones((1, C, W, H))
output1 = PNet(data1)
# a different batch size (5)
data2 = mx.nd.ones((5, C, W, H))
output2 = PNet(data2)
And it would work.
You can get started with MXNet Gluon with the official 60 minutes crash course
I'm trying to run a hyperparameter optimization script, for a convNN using Tensorflow.
As you may know, TF handling of the GPU-Memory isn't that fancy(don't think it will ever be, thanks to the TPU). So my question is how do I know to choose the filter dimensions and the batchsize, so that the GPU-memory don't get exhausted.
Here's the equation that I'm thinking of:
image_shape =128x128x3(3 color channel)
batchSitze = 20 ( is the smallest possible batchsize, since I got 20 klasses)
filter_shape= fw_fh_fd[filter_width=4, filter_height=4, filter_depth=32]
As far as understood, using tf.conv2d function will need the following amount of memory:
image_width * image_height *numerofchannel*batchSize*filter_height*filter_width*filter_depth*32bit
since we're tf.float32 type for each pixel.
in the given example, the needed memory, will be :
128x128x3x20x4x4x32x32 =16106127360 (bits), which is all most 16GB of memory.
I'm not the formula is correct, so I hope to get a validation or the a correction of what I'm missing.
Actually, this will take only about 44MB of memory, mostly taken by the output.
Your input is 20x128x128x3
The convolution kernel is 4x4x3x32
The output is 20x128x128x32
When you sum up the total, you get
(20*128*128*3 + 4*4*3*32 + 20*128*128*32) * 4 / 1024**2 ≈ 44MB
(In the above, 4 is for the size in bytes of float32 and 1024**2 is to get the result in MB).
Your batch size can be smaller than your number of classes. Think about ImageNet and its 1000 classes: people are training with batch sizes 10 times smaller.
EDIT
Here is a tensorboard screenshot of the net — it reports 40MB rather than 44MB, probably because it excludes the input — and you also have all the tensor sizes I mentioned earlier.
For opencl optimization, my idea is try to make match for
1 workgroup(kernel coding) as compute unit(GPU Hardware)
1 workitem(kernel coding) as process element(GPU Hardware)
( Maybe my idea is not correct, please teach me )
for example:
1. I have a global work size of 4000 by 3000.
2. My GPU opnecl device has a maximum work-group-size of 8192.
3. I call clEnqueueNDRangeKernel with the desired local-work-size (along with all other necessary parameters)
4. by fucntion call:
a. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), (void*)&workGroupSizeUsed, NULL);
b. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), (void*)&workGroupSizeUsed, NULL);
above a and b are return 8192.
maximum work-group-size, CL_KERNEL_WORK_GROUP_SIZE, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE all are 8192.
I have no idea what I should follow to define my local work size...
(Q1)Any good idea for setting the local work size? (10x10? 40x30, X by Y )
clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, global_work_item_size, local_work_item_size, 0, NULL, NULL);
Very headache to define this "local_work_item_size" of clEnqueueNDRangeKernel function.
(Q2)
Could some one explain the difference if I set local work size = 1,1 between
local work size = 4000,3000 ?
Thank you in advance!
(Q1)Any good idea for setting the local work size? (10x10? 40x30, X by Y )
As pmdj pointed out, this highly depends on your application. Since it is unclear how you selected your global_work_size and it is also linked to the local_work_size I would like to explain that one first. Usually what you would want to do is to map the size of the data you want to process to the global_work_size. E.g. if you have an array with 1024 values you would also pick a global_work_size of 1024 because then you can easily use the global id as an index in your OpenCL program:
int index = get_global_id(0);
input_array[index]++; // your data processing
However, the global_work_size is limited to a maximum 2^32 - 1. If you have more data to process than that you can pass your global_work_size and data size as parameters and use a loop like the following one:
int index = get_global_id(0);
for (int i = index; i < data_size; i += global_work_size) {
input_array[i]++; // your data processing
}
The last fact which is important for the global_work_size is that it needs to be dividable by the local_work_size. This can result into a your global_work_size being bigger than your data size, e.g. you could have 1000 values while your local_work_size is 32. Then you would make your global_work_size 1024 and ensure through a condition like the one above (i < data_size) that the redundant work items are not doing anything weird like accessing not allocated memory areas.
The local_work_size depends on your platform. First of all you should always have a local_work_size which is a multiple of 32 for NVIDIA or a multiple of 64 for AMD GPUs. This represents the amount of operations which are scheduled together anyway. If you use a different number the GPU will have idle threads which won't do anything but decrease your performance.
Not only the manufacturer but also the specific type of your GPU has to be considered to find the optimal local_work_size. The global_work_size divided by the local_work_size is the number of work groups. Each work group is executed by one thread inside your CPU/GPU. If you use OpenCL to run your application on powerful hardware you want to make sure that it runs as parallel as possible. E.g. if you use an Intel i7 with 8 threads you would want to make sure that you have at least 8 work groups (global_work_size / local_work_size >= 8). If you use a NVIDIA GeForce GTX 1060 with 1280 CUDA Cores you would want to have at least 1280 work groups. But never at the cost of having a local_work_size of less than 32 which is more important!
If you are having more work groups than your hardware has threads that does not matter, they will be processed sequentially. Hence for most applications you can always set your local_work_size to 32/64. The only exception is if you require synchronization among more than work items. E.g. barriers only work inside work groups but not among different work groups. An example: If you need to to sum up chunks of 1024 values before being able to proceed with your algorithm you would need to set your local_work_size to 1024 for the barrier to work as desired.
(Q2) Could some one explain the difference if I set local work size = 1,1 between local work size = 4000,3000 ?
Both, the global_work_size and the local_work_size can have more than one dimension. If this is used or not solely depends on the preference of the programmer. All algorithms can be implemented in one dimension as well and the number of work groups is calculated by multiplying the dimensions, e.g. if your global_work_size is 20*20 and your local_work_size is 10*10 you would run the program with (20*20) / (10*10) = 400 work groups.
I personally like to use the dimensions if I am processing data which has multiple dimensions. Imagine your input is a two-dimensional image, you could simply use its width and height as global_work_size (e.g. 1024 * 1024) and the local_work_size accordingly (e.g. 32 * 32). In your code you could then use the following indices:
int x = get_global_id(0);
int y = get_global_id(1);
input_array[x][y]++; // your data processing
I'm trying to learn the state embeddings for a sequence of states produced by a HMM, similar to how the tensorflow Vector Representation of Words does this for text sequences.
My issue is that the "vocabulary" of this HMM is only 12 different states. Tensorflow doesn't seem to like it when I run my code using batches larger than the size of this vocabulary. For example, attempting to train it with a batch size of 14 gives the error:
F tensorflow/core/kernels/range_sampler.cc:86] Check failed: batch_size + avoided_values.size() <= range_ (14 vs. 12)
Abort trap: 6
What is the motivation behind this check?
If you are following the example from the tutorial
This error actually comes when you set the num_sampled > len(vocabulary)
num_sampled = 64 # Number of negative examples to sample.
you cannot indeed sample indexes (for the negative examples in word to vec) beyond the vocabulary size