I built a very simple Convolutional Neural Network using the pre-trained VGG16.
I am using the Pokemon generation one dataset containing 10.000 images belonging to 149 different classes. I manually split the dataset, 0.7 for training and 0.3 for validation in different directories.
The problem is that I am getting high accuracy but the validation accuracy is not very high.
In the code below, there is the best configuration found, using Adam optimizer with 0.0001 of learning rate.
Can someone suggest me how I can improve the performance and avoid overfitting?
Code:
import tensorflow as tf
import numpy as np
vgg_model = tf.keras.applications.VGG16(weights='imagenet', include_top=False, input_shape = (224,224,3))
vgg_model.trainable = False
model = tf.keras.models.Sequential()
model.add(vgg_model)
model.add(tf.keras.layers.Flatten(input_shape=vgg_model.output_shape[1:]))
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(149, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0001, decay=0.0001/100), loss='categorical_crossentropy', metrics=['accuracy'])
train= tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test= tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
training_set = train.flow_from_directory('datasets/generation/train', target_size=(224,224), class_mode = 'categorical')
val_set = train.flow_from_directory('datasets/generation/test', target_size=(224,224), class_mode = 'categorical')
history = model.fit_generator(training_set, steps_per_epoch = 64, epochs = 100, validation_data = val_set, validation_steps = 64)
Here is the output every 10 epochs:
Epoch 1/100
64/64 [====================] - 57s 891ms/step - loss: 4.8707 - acc: 0.0654 - val_loss: 4.7281 - val_acc: 0.0718
Epoch 10/100
64/64 [====================] - 53s 821ms/step - loss: 2.9540 - acc: 0.4141 - val_loss: 3.2206 - val_acc: 0.3447
Epoch 20/100
64/64 [====================] - 56s 869ms/step - loss: 1.9040 - acc: 0.6279 - val_loss: 2.6155 - val_acc: 0.4577
Epoch 30/100
64/64 [====================] - 50s 781ms/step - loss: 1.2899 - acc: 0.7658 - val_loss: 2.3345 - val_acc: 0.4897
Epoch 40/100
64/64 [====================] - 53s 832ms/step - loss: 1.0192 - acc: 0.8096 - val_loss: 2.1765 - val_acc: 0.5149
Epoch 50/100
64/64 [====================] - 55s 854ms/step - loss: 0.7948 - acc: 0.8672 - val_loss: 2.1082 - val_acc: 0.5359
Epoch 60/100
64/64 [====================] - 52s 816ms/step - loss: 0.5774 - acc: 0.9106 - val_loss: 2.0673 - val_acc: 0.5435
Epoch 70/100
64/64 [====================] - 52s 811ms/step - loss: 0.4383 - acc: 0.9385 - val_loss: 2.0499 - val_acc: 0.5454
Epoch 80/100
64/64 [====================] - 56s 881ms/step - loss: 0.3638 - acc: 0.9473 - val_loss: 1.9849 - val_acc: 0.5501
Epoch 90/100
64/64 [====================] - 55s 860ms/step - loss: 0.2860 - acc: 0.9609 - val_loss: 1.9564 - val_acc: 0.5531
Epoch 100/100
64/64 [====================] - 52s 815ms/step - loss: 0.2328 - acc: 0.9697 - val_loss: 2.0334 - val_acc: 0.5615
As i can see in your output above you are not overfitting yet but there is a huge spread between train and validation score. There are plenty of things you can try to improve you validation score.
You could add more training data (not always possible)
heavier augmentation
tta
and add dropout layers
add a dropout layer like this:
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(149, activation='softmax'))
Related
I've been trying to save and reupload a model and whenever I do that the accuracy always goes down.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu', input_shape=(IMG_SIZE,IMG_SIZE,3)))
model.add(tf.keras.layers.Conv2D(32, kernel_size=3, activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(len(SURFACE_TYPES), activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['acc'])
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=EPOCHS,
validation_steps=10)
Output:
Epoch 1/3
84/84 [==============================] - 2s 19ms/step - loss: 1.9663 - acc: 0.6258 - val_loss: 0.8703 - val_acc: 0.6867
Epoch 2/3
84/84 [==============================] - 1s 18ms/step - loss: 0.2865 - acc: 0.9105 - val_loss: 0.4494 - val_acc: 0.8667
Epoch 3/3
84/84 [==============================] - 1s 18ms/step - loss: 0.1409 - acc: 0.9574 - val_loss: 0.3614 - val_acc: 0.9000
This followed by running these commands to produce outputs result in the same training loss but different training accuracies. The weights and structures of the models are also identical.
model.save("my_model2.h5")
model2 = load_model("my_model2.h5")
model2.evaluate(train_ds)
model.evaluate(train_ds)
Output:
84/84 [==============================] - 1s 9ms/step - loss: 0.0854 - acc: 0.0877
84/84 [==============================] - 1s 9ms/step - loss: 0.0854 - acc: 0.9862
[0.08536089956760406, 0.9861862063407898]
i have shared reference link click here
it has all formats to save & load your model
I am currently working defect classification problem in solar panel. It's a multi class classification problem. Currently its 3 class. I have done the coding part but my accuracy is very low. How to improve my accuracy?
Total training images - 900
Testing/validation - 300
Class - 3
My code is given below -
import tensorflow as tf
import keras_preprocessing
from keras_preprocessing import image
from keras_preprocessing.image import ImageDataGenerator
TRAINING_DIR = "/content/drive/My Drive/solar_images/solar_images/train/"
training_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
VALIDATION_DIR = "/content/drive/My Drive/solar_images/solar_images/test/"
validation_datagen = ImageDataGenerator(rescale = 1./255)
train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical',
batch_size=64
)
validation_generator = validation_datagen.flow_from_directory(
VALIDATION_DIR,
target_size=(150,150),
class_mode='categorical',
batch_size=64
)
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 150x150 with 3 bytes color
# This is the first convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The third convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fourth convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
# 512 neuron hidden layer
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')
])
model.summary()
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
batch_size=64
history = model.fit(train_generator,
epochs=20,
steps_per_epoch=int(894/batch_size),
validation_data = validation_generator,
verbose = 1,
validation_steps=int(289/batch_size))
model.save("solar_images_weight.h5")
My accuracy is -
Epoch 1/20
13/13 [==============================] - 1107s 85s/step - loss: 1.2893 - accuracy: 0.3470 - val_loss: 1.0926 - val_accuracy: 0.3594
Epoch 2/20
13/13 [==============================] - 1239s 95s/step - loss: 1.1037 - accuracy: 0.3566 - val_loss: 1.0954 - val_accuracy: 0.3125
Epoch 3/20
13/13 [==============================] - 1203s 93s/step - loss: 1.0964 - accuracy: 0.3904 - val_loss: 1.0841 - val_accuracy: 0.5625
Epoch 4/20
13/13 [==============================] - 1182s 91s/step - loss: 1.0980 - accuracy: 0.3750 - val_loss: 1.0894 - val_accuracy: 0.3633
Epoch 5/20
13/13 [==============================] - 1218s 94s/step - loss: 1.1086 - accuracy: 0.3386 - val_loss: 1.0874 - val_accuracy: 0.3125
Epoch 6/20
13/13 [==============================] - 1214s 93s/step - loss: 1.0953 - accuracy: 0.3257 - val_loss: 1.0763 - val_accuracy: 0.6094
Epoch 7/20
13/13 [==============================] - 1136s 87s/step - loss: 1.0851 - accuracy: 0.3831 - val_loss: 1.0754 - val_accuracy: 0.3164
Epoch 8/20
13/13 [==============================] - 1170s 90s/step - loss: 1.1005 - accuracy: 0.3940 - val_loss: 1.0545 - val_accuracy: 0.5039
Epoch 9/20
13/13 [==============================] - 1138s 88s/step - loss: 1.1294 - accuracy: 0.4337 - val_loss: 1.0130 - val_accuracy: 0.5703
Epoch 10/20
13/13 [==============================] - 1131s 87s/step - loss: 1.0250 - accuracy: 0.4531 - val_loss: 0.8911 - val_accuracy: 0.6055
Epoch 11/20
13/13 [==============================] - 1162s 89s/step - loss: 1.0243 - accuracy: 0.4735 - val_loss: 0.9160 - val_accuracy: 0.4727
Epoch 12/20
13/13 [==============================] - 1153s 89s/step - loss: 0.9978 - accuracy: 0.4783 - val_loss: 0.7754 - val_accuracy: 0.6406
Epoch 13/20
13/13 [==============================] - 1187s 91s/step - loss: 1.0080 - accuracy: 0.4687 - val_loss: 0.7701 - val_accuracy: 0.6602
Epoch 14/20
13/13 [==============================] - 1204s 93s/step - loss: 0.9851 - accuracy: 0.5048 - val_loss: 0.7450 - val_accuracy: 0.6367
Epoch 15/20
13/13 [==============================] - 1181s 91s/step - loss: 0.9699 - accuracy: 0.4892 - val_loss: 0.7409 - val_accuracy: 0.6289
Epoch 16/20
13/13 [==============================] - 1187s 91s/step - loss: 0.8884 - accuracy: 0.5241 - val_loss: 0.7169 - val_accuracy: 0.6133
Epoch 17/20
13/13 [==============================] - 1197s 92s/step - loss: 0.9372 - accuracy: 0.5084 - val_loss: 0.7464 - val_accuracy: 0.5859
Epoch 18/20
13/13 [==============================] - 1224s 94s/step - loss: 0.9230 - accuracy: 0.5229 - val_loss: 0.9198 - val_accuracy: 0.5156
Epoch 19/20
13/13 [==============================] - 1270s 98s/step - loss: 0.9161 - accuracy: 0.5192 - val_loss: 0.6785 - val_accuracy: 0.6289
Epoch 20/20
13/13 [==============================] - 1173s 90s/step - loss: 0.8728 - accuracy: 0.5193 - val_loss: 0.6674 - val_accuracy: 0.5781
Training and validation accuracy plot is given below -
You could use transfer learning. Using a pre-trained model such as mobilenet or inception to train on your dataset. This would significantly improve your accuracy.
Recently I have been trying to do multi-class classification. My datasets consist of 17 image categories. Previously I was using 3 conv layers and 2 hidden layers. It resulted my model overfitting with huge validation loss around 11.0++ and my validation accuracy was very low. So I decided to decrease the conv layers by 1 and hidden layer by 1. I also have removed dropout and it still have the same problem with the validation which still overfitting, even though my training accuracy and loss are getting better.
Here is my code for prepared datasets:
import cv2
import numpy as np
import os
import pickle
import random
CATEGORIES = ["apple_pie", "baklava", "caesar_salad","donuts",
"fried_calamari", "grilled_salmon", "hamburger",
"ice_cream", "lasagna", "macaroni_and_cheese", "nachos", "omelette","pizza",
"risotto", "steak", "tiramisu", "waffles"]
DATALOC = "D:/Foods/Datasets"
IMAGE_SIZE = 50
data_training = []
def create_data_training():
for category in CATEGORIES:
path = os.path.join(DATALOC, category)
class_num = CATEGORIES.index(category)
for image in os.listdir(path):
try:
image_array = cv2.imread(os.path.join(path,image), cv2.IMREAD_GRAYSCALE)
new_image_array = cv2.resize(image_array, (IMAGE_SIZE,IMAGE_SIZE))
data_training.append([new_image_array,class_num])
except Exception as exc:
pass
create_data_training()
random.shuffle(data_training)
X = []
y = []
for features, label in data_training:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 1)
y = np.array(y)
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
Here is the code of my model:
import pickle
import tensorflow as tf
import time
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.layers import Activation, Conv2D, Dense, Dropout, Flatten, MaxPooling2D
NAME = "Foods-Model-{}".format(int(time.time()))
tensorboard = TensorBoard(log_dir='logs\{}'.format(NAME))
X = pickle.load(open("X.pickle","rb"))
y = pickle.load(open("y.pickle","rb"))
X = X/255.0
model = Sequential()
model.add(Conv2D(32,(3,3), input_shape = X.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size =(2,2)))
model.add(Conv2D(64,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size =(2,2)))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dense(17))
model.add(Activation('softmax'))
model.compile(loss = "sparse_categorical_crossentropy", optimizer = "adam", metrics = ['accuracy'])
model.fit(X, y, batch_size = 16, epochs = 20 , validation_split = 0.1, callbacks = [tensorboard])
The result of the trained model:
Train on 7650 samples, validate on 850 samples
Epoch 1/20
7650/7650 [==============================] - 242s 32ms/sample - loss: 2.7826 - accuracy: 0.1024 - val_loss: 2.7018 - val_accuracy: 0.1329
Epoch 2/20
7650/7650 [==============================] - 241s 31ms/sample - loss: 2.5673 - accuracy: 0.1876 - val_loss: 2.5597 - val_accuracy: 0.2059
Epoch 3/20
7650/7650 [==============================] - 234s 31ms/sample - loss: 2.3529 - accuracy: 0.2617 - val_loss: 2.5329 - val_accuracy: 0.2153
Epoch 4/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 2.0707 - accuracy: 0.3510 - val_loss: 2.6628 - val_accuracy: 0.2059
Epoch 5/20
7650/7650 [==============================] - 231s 30ms/sample - loss: 1.6960 - accuracy: 0.4753 - val_loss: 2.8143 - val_accuracy: 0.2047
Epoch 6/20
7650/7650 [==============================] - 230s 30ms/sample - loss: 1.2336 - accuracy: 0.6247 - val_loss: 3.3130 - val_accuracy: 0.1929
Epoch 7/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 0.7738 - accuracy: 0.7715 - val_loss: 3.9758 - val_accuracy: 0.1776
Epoch 8/20
7650/7650 [==============================] - 231s 30ms/sample - loss: 0.4271 - accuracy: 0.8827 - val_loss: 4.7325 - val_accuracy: 0.1882
Epoch 9/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 0.2080 - accuracy: 0.9519 - val_loss: 5.7198 - val_accuracy: 0.1918
Epoch 10/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 0.1402 - accuracy: 0.9668 - val_loss: 6.0608 - val_accuracy: 0.1835
Epoch 11/20
7650/7650 [==============================] - 236s 31ms/sample - loss: 0.0724 - accuracy: 0.9872 - val_loss: 6.7468 - val_accuracy: 0.1753
Epoch 12/20
7650/7650 [==============================] - 232s 30ms/sample - loss: 0.0549 - accuracy: 0.9895 - val_loss: 7.4844 - val_accuracy: 0.1718
Epoch 13/20
7650/7650 [==============================] - 229s 30ms/sample - loss: 0.1541 - accuracy: 0.9591 - val_loss: 7.3335 - val_accuracy: 0.1553
Epoch 14/20
7650/7650 [==============================] - 231s 30ms/sample - loss: 0.0477 - accuracy: 0.9905 - val_loss: 7.8453 - val_accuracy: 0.1729
Epoch 15/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 0.0346 - accuracy: 0.9908 - val_loss: 8.1847 - val_accuracy: 0.1753
Epoch 16/20
7650/7650 [==============================] - 231s 30ms/sample - loss: 0.0657 - accuracy: 0.9833 - val_loss: 7.8582 - val_accuracy: 0.1624
Epoch 17/20
7650/7650 [==============================] - 233s 30ms/sample - loss: 0.0555 - accuracy: 0.9830 - val_loss: 8.2578 - val_accuracy: 0.1553
Epoch 18/20
7650/7650 [==============================] - 230s 30ms/sample - loss: 0.0423 - accuracy: 0.9892 - val_loss: 8.6970 - val_accuracy: 0.1694
Epoch 19/20
7650/7650 [==============================] - 236s 31ms/sample - loss: 0.0291 - accuracy: 0.9927 - val_loss: 8.5275 - val_accuracy: 0.1882
Epoch 20/20
7650/7650 [==============================] - 234s 31ms/sample - loss: 0.0443 - accuracy: 0.9873 - val_loss: 9.2703 - val_accuracy: 0.1812
Thank You for your time. Any help and suggestion will be really appreciated.
Your model suggests early over-fitting.
Get rid of the dense layer completely and use global pooling.
model = Sequential()
model.add(Conv2D(32,(3,3), input_shape = X.shape[1:]))
model.add(Activation("relu"))
model.add(Conv2D(64,(3,3)))
model.add(Activation("relu"))
model.add(Conv2D(128,(3,3)))
model.add(Activation("relu"))
model.add(GlobalAveragePooling2D())
model.add(Dense(17))
model.add(Activation('softmax'))
model.summary()
Use SpatialDropout2D after conv layers.
ref: https://www.tensorflow.org/api_docs/python/tf/keras/layers/SpatialDropout2D
Use early stopping to get a balanced model.
Your output suggests categorical_crossentropy as a better-fit loss.
I am kind of new to deep learning and especially keras, and I have an assignment from university to train a CNN and learn about it, using keras. I am using the MURA dataset (skeletonal radiography).
What I have done until now is to go over all images from the dataset and split the training set into train and validation (90/10).
I am using a CNN that has been given in the paper and I am not allowed to modify it until the second task. The first task is to observe and understand the CNN.
def run():
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory('train_data',
target_size=(227,227),
batch_size=BATCH_SIZE,
class_mode='binary',
color_mode='grayscale'
)
val_generator = val_datagen.flow_from_directory('test_data',
target_size=(227,227),
batch_size=BATCH_SIZE,
class_mode='binary',
color_mode='grayscale'
)
classifier = Sequential()
classifier.add(Conv2D(64,(7,7),strides=2, input_shape=(227,227,1)))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size=(2,2), strides=2))
classifier.add(Conv2D(128, (5,5), strides=2 ))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size=(2,2),strides=2))
classifier.add(Conv2D(256, (3,3), strides=1))
classifier.add(Activation('relu'))
classifier.add(Conv2D(384, (3,3), strides=1))
classifier.add(Activation('relu'))
classifier.add(Conv2D(256, (3,3), strides=1))
classifier.add(Activation('relu'))
classifier.add(Conv2D(256, (3,3), strides=1))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size=(2,2),strides=2))
classifier.add(Flatten())
classifier.add(Dropout(0.5))
classifier.add(Dense(units=2048))
classifier.add(Activation('relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(units=1))
classifier.add(Activation('sigmoid'))
classifier.summary()
# from keras.optimizers import SGD
# sg = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
classifier.compile(optimizer=keras.optimizers.SGD(),loss='binary_crossentropy', metrics=['accuracy'])
classifier.fit_generator(train_generator,
steps_per_epoch= training_len//BATCH_SIZE,
epochs=10,
validation_data=val_generator,
validation_steps= valid_len//BATCH_SIZE,
shuffle=True,
verbose=1)
classifier.save_weights('first_model_weights.h5')
classifier.save('first_model.h5')
The problem I am having is that if I run this, it just does not learn. Or at least I think it doesn't.
The output looks like this:
Epoch 1/10
575/575 [==============================] - 693s 1s/step - loss: 0.6767 - acc: 0.5958 - val_loss: 0.6751 - val_acc: 0.5966
Epoch 2/10
575/575 [==============================] - 207s 359ms/step - loss: 0.6760 - acc: 0.5948 - val_loss: 0.6752 - val_acc: 0.5958
Epoch 3/10
575/575 [==============================] - 258s 448ms/step - loss: 0.6745 - acc: 0.5983 - val_loss: 0.6748 - val_acc: 0.5958
Epoch 4/10
575/575 [==============================] - 165s 287ms/step - loss: 0.6760 - acc: 0.5950 - val_loss: 0.6757 - val_acc: 0.5947
Epoch 5/10
575/575 [==============================] - 166s 288ms/step - loss: 0.6761 - acc: 0.5948 - val_loss: 0.6731 - val_acc: 0.6016
Epoch 6/10
575/575 [==============================] - 167s 290ms/step - loss: 0.6742 - acc: 0.5990 - val_loss: 0.6778 - val_acc: 0.5875
Epoch 7/10
575/575 [==============================] - 206s 359ms/step - loss: 0.6762 - acc: 0.5938 - val_loss: 0.6721 - val_acc: 0.6038
Epoch 8/10
575/575 [==============================] - 165s 286ms/step - loss: 0.6762 - acc: 0.5938 - val_loss: 0.6763 - val_acc: 0.5947
Epoch 9/10
575/575 [==============================] - 164s 286ms/step - loss: 0.6751 - acc: 0.5972 - val_loss: 0.6787 - val_acc: 0.5897
Epoch 10/10
575/575 [==============================] - 168s 292ms/step - loss: 0.6750 - acc: 0.5971 - val_loss: 0.6722 - val_acc: 0.6022
Am I doing something wrong in the code? Is it the dataset splitting? I am currently in a dark spot and I can't seem to figure it out.
I am trying to learn keras and none of the code I use is learning. From the example code on Deep Learning with Python to the code on https://medium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-and-tensorflow-backend-6eaab98d14dd. With the last link, I am not able to use the full 10000 dataset, but even with my 1589 size training dataset the accuracy still stays at .5 the whole time.
I'm almost starting to think the problem is my overclocked cpu, and ram, but thats more of a crazy guess.
I initially thought the problem was that I had the tensorflow2.0.0-alpha. However, even after I went to regular tensorflow-gpu still nothing is learning.
#Convolutional Neural Network
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.models import model_from_json
import os
#initialize the cnn
classifier = Sequential()
#Step 1 convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
#Step 2 Pooling
classifier.add(MaxPooling2D(pool_size = (2,2)))
#Step 3 Flattening
classifier.add(Flatten())
#Step 4 Full Connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 64, activation = 'relu'))
classifier.add(Dense(output_dim = 32, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
#Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#Part 2 Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1/.255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
from IPython.display import display
from PIL import Image
classifier.fit_generator(
training_set,
steps_per_epoch=1589,
epochs=10,
validation_data=test_set,
validation_steps=378)
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/test_set/cats/cat.4012.jpg', target_size = (64,64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] >= 0.5:
prediction = 'dog'
else:
prediction = 'cat'
print(prediction)
examples from deep-learning with python
from keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) =
imdb.load_data(num_words = 10000)
import numpy as np
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i,sequence in enumerate(sequences):
results[i, sequence]=1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(16, activation='relu',input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val,y_val))
dogs an cats output:
Epoch 1/10
1589/1589 [==============================] - 112s 70ms/step - loss: 7.8736 - acc: 0.5115 - val_loss: 7.9528 - val_acc: 0.4976
Epoch 2/10
1589/1589 [==============================] - 111s 70ms/step - loss: 7.8697 - acc: 0.5117 - val_loss: 7.9606 - val_acc: 0.4971
Epoch 3/10
1589/1589 [==============================] - 111s 70ms/step - loss: 7.8740 - acc: 0.5115 - val_loss: 7.9499 - val_acc: 0.4978
Epoch 4/10
1589/1589 [==============================] - 111s 70ms/step - loss: 7.8674 - acc: 0.5119 - val_loss: 7.9634 - val_acc: 0.4969
Epoch 5/10
1589/1589 [==============================] - 111s 70ms/step - loss: 7.8765 - acc: 0.5113 - val_loss: 7.9499 - val_acc: 0.4977
Epoch 6/10
1589/1589 [==============================] - 111s 70ms/step - loss: 7.8737 - acc: 0.5115 - val_loss: 7.9634 - val_acc: 0.4970
Epoch 7/10
1589/1589 [==============================] - 129s 81ms/step - loss: 7.8623 - acc: 0.5122 - val_loss: 7.9626 - val_acc: 0.4970
Epoch 8/10
1589/1589 [==============================] - 112s 71ms/step - loss: 7.8758 - acc: 0.5114 - val_loss: 7.9508 - val_acc: 0.4977
Epoch 9/10
1589/1589 [==============================] - 115s 72ms/step - loss: 7.8708 - acc: 0.5117 - val_loss: 7.9519 - val_acc: 0.4976
Epoch 10/10
1589/1589 [==============================] - 112s 70ms/step - loss: 7.8738 - acc: 0.5115 - val_loss: 7.9614 - val_acc: 0.4971
cat
deeplearning imdb example output:
WARNING:tensorflow:From C:\Users\Mike\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 15000 samples, validate on 10000 samples
Epoch 1/20
15000/15000 [==============================] - 4s 246us/step - loss: 0.6932 - acc: 0.4982 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 2/20
15000/15000 [==============================] - 2s 115us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 3/20
15000/15000 [==============================] - 2s 115us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 4/20
15000/15000 [==============================] - 2s 119us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 5/20
15000/15000 [==============================] - 2s 120us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 6/20
15000/15000 [==============================] - 2s 119us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 7/20
15000/15000 [==============================] - 2s 113us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 8/20
15000/15000 [==============================] - 2s 113us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 9/20
15000/15000 [==============================] - 2s 119us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 10/20
15000/15000 [==============================] - 2s 122us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 11/20
15000/15000 [==============================] - 2s 116us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 12/20
15000/15000 [==============================] - 2s 116us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 13/20
15000/15000 [==============================] - 2s 121us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6933 - val_acc: 0.4947
Epoch 14/20
15000/15000 [==============================] - 2s 127us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 15/20
15000/15000 [==============================] - 2s 121us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 16/20
15000/15000 [==============================] - 2s 113us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 17/20
15000/15000 [==============================] - 2s 115us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 18/20
15000/15000 [==============================] - 2s 114us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 19/20
15000/15000 [==============================] - 2s 114us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947
Epoch 20/20
15000/15000 [==============================] - 2s 119us/step - loss: 0.6931 - acc: 0.5035 - val_loss: 0.6932 - val_acc: 0.4947