In javascript we can do something like this
function putritanjungsari(data){
console.log(data.name)
}
let data = {
name:"putri",
div:"m4th"
}
putritanjungsari(data)
In kotlin, i'am creating a function that accept an object as parameter then read it's properties later, how to do that in kotlin that targeting JVM?
If I understood your question correct, you are trying to have a variable that associates keys with some value or undefined(null in kt) if none are found. You are searching for a Map
If you don't know what types you want, you can make a map of type Any? So
Map<String, Any?>
Which is also nullable
Map<String, Any>
If you don't want nullables
Your code for example:
fun putritanjungsari(data: Map<String, Any?>){
print(data["name"])
}
val data: Map<String, Any?> =mapOf(
"name" to "putri",
"div" to "m4th"
)
putritanjungsari(data)
Note that you can't add new keys or edit any data here, the default map is immutable. There is MutableMap (which is implemented the same, only it has a method to put new data)
You can apply the property design pattern to solve your problem.
Here is its implementation in Kotlin:
interface DynamicProperty<T> {
fun cast(value: Any?): T
fun default(): T
companion object {
inline fun <reified T> fromDefaultSupplier(crossinline default: () -> T) =
object : DynamicProperty<T> {
override fun cast(value: Any?): T = value as T
override fun default(): T = default()
}
inline operator fun <reified T> invoke(default: T) = fromDefaultSupplier { default }
inline fun <reified T> required() = fromDefaultSupplier<T> {
throw IllegalStateException("DynamicProperty isn't initialized")
}
inline fun <reified T> nullable() = DynamicProperty<T?>(null)
}
}
operator fun <T> DynamicProperty<T>.invoke(value: T) = DynamicPropertyValue(this, value)
data class DynamicPropertyValue<T>(val property: DynamicProperty<T>, val value: T)
class DynamicObject(vararg properties: DynamicPropertyValue<*>) {
private val properties = HashMap<DynamicProperty<*>, Any?>().apply {
properties.forEach { put(it.property, it.value) }
}
operator fun <T> get(property: DynamicProperty<T>) =
if (properties.containsKey(property)) property.cast(properties[property])
else property.default()
operator fun <T> set(property: DynamicProperty<T>, value: T) = properties.put(property, value)
operator fun <T> DynamicProperty<T>.minus(value: T) = set(this, value)
}
fun dynamicObj(init: DynamicObject.() -> Unit) = DynamicObject().apply(init)
You can define your properties these ways:
val NAME = DynamicProperty.required<String>() // throws exceptions on usage before initialization
val DIV = DynamicProperty.nullable<String>() // has nullable type String?
val IS_ENABLED = DynamicProperty(true) // true by default
Now you can use them:
fun printObjName(obj: DynamicObject) {
println(obj[NAME])
}
val data = dynamicObj {
NAME - "putri"
DIV - "m4th"
}
printObjName(data)
// throws exception because name isn't initialized
printObjName(DynamicObject(DIV("m4th"), IS_ENABLED(false)))
Reasons to use DynamicObject instead of Map<String, Any?>:
Type-safety (NAME - 3 and NAME(true) will not compile)
No casting is required on properties usage
You can define what the program should do when a property isn't initialized
Kotlin is statically typed language, so it required a param type to be precisely defined or unambiguously inferred (Groovy, for instance, addresses the case by at least two ways). But for JS interoperability Kotlin offers dynamic type.
Meanwhile, in your particular case you can type data structure to kt's Map and do not argue with strict typing.
You have to use Any and after that, you have to cast your object, like this
private fun putritanjungsari(data : Any){
if(data is Mydata){
var data = data as? Mydata
data.name
}
}
Just for the sake of inspiration. In Kotlin, you can create ad hoc objects:
val adHoc = object {
var x = 1
var y = 2
}
println(adHoc.x + adHoc.y)
Related
I've created a Kotlin equivalent of TypeReference<T> like so:
abstract class TypeReference<T> : Comparable<T> {
val type: Type get() = getGenericType()
val arguments: List<Type> get() = getTypeArguments()
final override fun compareTo(other: T): Int {
return 0
}
private fun getGenericType(): Type {
val superClass = javaClass.genericSuperclass
check(superClass !is Class<*>) {
"TypeReference constructed without actual type information."
}
return (superClass as ParameterizedType).actualTypeArguments[0]
}
private fun getTypeArguments(): List<Type> {
val type = getGenericType()
return if (type is ParameterizedType) {
type.actualTypeArguments.toList()
} else emptyList()
}
}
In order to obtain Class<*> of the generic type and its arguments, I've also created the following extension function (and this is where I believe the problem lies, since this is where the stack trace fails).
fun Type.toClass(): Class<*> = when (this) {
is ParameterizedType -> rawType.toClass()
is Class<*> -> this
else -> Class.forName(typeName)
}
I'm unit testing this like so:
#Test
fun `TypeReference should correctly identify the List of BigDecimal type`() {
// Arrange
val expected = List::class.java
val expectedParameter1 = BigDecimal::class.java
val typeReference = object : TypeReference<List<BigDecimal>>() {}
// Act
val actual = typeReference.type.toClass()
val actualParameter1 = typeReference.arguments[0].toClass()
// Assert
assertEquals(expected, actual)
assertEquals(expectedParameter1, actualParameter1)
}
The problem I think, lies in the extension function else -> Class.forName(typeName) as it throws:
java.lang.ClassNotFoundException: ? extends java.math.BigDecimal
Is there a better way to obtain the Class<*> of a Type, even when they're generic type parameters?
You need to add is WildcardType -> ... branch to your when-expression to handle types like ? extends java.math.BigDecimal (Kotlin equivalent is out java.math.BigDecimal), ?(Kotlin equivalent is *), ? super Integer(Kotlin equivalent is in java.math.Integer):
fun Type.toClass(): Class<*> = when (this) {
is ParameterizedType -> rawType.toClass()
is Class<*> -> this
is WildcardType -> upperBounds.singleOrNull()?.toClass() ?: Any::class.java
else -> Class.forName(typeName)
}
Note that in this implementation single upper bound types will be resolved as its upper bound, but all other wildcard types (including multiple upper bounds types) will be resolved as Class<Object>
https://github.com/pluses/ktypes
val typeReference = object : TypeReference<List<BigDecimal>>() {}
val superType = typeReference::class.createType().findSuperType(TypeReference::class)!!
println(superType.arguments.first())// List<java.math.BigDecimal>
println(superType.arguments.first().type?.arguments?.first())// java.math.BigDecimal
We're trying to do some generic processing in kotlin. Basically, for a given class, we want to get the related Builder object. i.a. for any object that extends a GenericObject, we want a Builder of that Object.
interface Builder<T : GenericObject>
object ConcreteBuilder: Builder<ConcreteObject>
We'd need a function that will return ConcreteBuilder from ConcreteObject
Our current implementation is a Map:
val map = mapOf<KClass<out GenericObject>, Builder<out GenericObject>>(
ConcreteObject::class to ConcreteBuilder
)
Then we can get it with:
inline fun <reified T : GenericObject> transform(...): T {
val builder = map[T::class] as Builder<T>
...
However this isn't very nice as:
we need an explicit cast to Builder<T>
the map has no notion of T, a key and a value could be related to different types.
Is there any better way to achieve it?
A wrapper for the map could be:
class BuilderMap {
private val map = mutableMapOf<KClass<out GenericObject>, Builder<out GenericObject>>()
fun <T: GenericObject> put(key: KClass<T>, value: Builder<T>) {
map[key] = value
}
operator fun <T: GenericObject> get(key: KClass<T>): Builder<T> {
return map[key] as Builder<T>
}
}
This hides the ugliness, while not completely removing it.
To use:
val builderMap = BuilderMap()
builderMap.put(ConcreteObject::class, ConcreteBuilder)
builderMap.put(BetonObject::class, BetonBuilder)
// builderMap.put(BetonObject::class, ConcreteBuilder) – will not compile
val builder = builderMap[T::class]
I have a function that returns IMyInterface
fun getValue(type: Types): IMyInterface? {}
But I have to always cast the return type in this way before I can use it:
getValue(Types.TypeInt)?.let { value ->
val usableVale = MyInterfaceAsInt.cast(value)
// more code...
}
MyInterfaceAsInt implements IMyInterface and I have no control over them.
The casting always depend of the input, so
Types.TypeInt -> MyInterfaceAsInt.cast(value)
Types.TypeLong -> MyInterfaceAsLong.cast(value)
...etc
Is there a way to define somthing like fun <T = Types> getValue(type: T) in a way that the return type can be inferred from type ?
I would like to do the casting inside getValue.
It looks like Types.TypesInt/Long/etc. are simply instances of the same type Types, not different types; and in fun <T> getValue(type: T), T has to be a type. So it doesn't seem to be possible.
But I would probably go the other way and define functions like
fun getValueAsInt(): MyInterfaceAsInt? = getValue(Types.TypeInt)?.let { MyInterfaceAsInt.cast(it) }
fun getValueAsLong(): MyInterfaceAsLong? = getValue(Types.TypeLong)?.let { MyInterfaceAsLong.cast(it) }
...
Another alternative which could be useful at least when the type can be inferred:
#Suppress("UNCHECKED_CAST")
inline fun <reified T : MyInterface> getValue(): T? = when(T::class) {
MyInterfaceAsInt::class -> getValue(Types.TypeInt)?.let { MyInterfaceAsInt.cast(it) }
MyInterfaceAsLong::class -> getValue(Types.TypeLong)?.let { MyInterfaceAsLong.cast(it) }
...
} as T
In Kotlin sometimes I have to work with double nullability. For example, I need double nullability, when I want to use T? where T may be a nullable type. There are a few approaches for doing this:
Holder<T>? where Holder is data class Holder<out T>(val element: T) - example1
boolean flag variable - example1
containsKey for Map<K, T?> - example1
The special UNINITIALIZED_VALUE for representing the second kind of null - example1
The last approach has the best performance, but it's also the most error-prone. So I've decided to encapsulate it in inline class Optional<T>:
inline class Optional<out T> #Deprecated(
message = "Not type-safe, use factory method",
replaceWith = ReplaceWith("Optional.of(_value)")
) constructor(private val _value: Any?) {
val value: T?
get() =
#Suppress("UNCHECKED_CAST")
if (isPresent) _value as T
else null
val isPresent: Boolean
get() = _value != NULL
companion object {
#Suppress("DEPRECATION")
fun <T> of(value: T) = Optional<T>(value)
fun <T : Any> ofNullable(value: T?): Optional<T> =
if (value == null) EMPTY
else of(value)
#Suppress("DEPRECATION")
val EMPTY = Optional<Nothing>(NULL)
}
private object NULL
}
inline fun <T> Optional<T>.ifPresent(code: (T) -> Unit) {
#Suppress("UNCHECKED_CAST")
if (isPresent) return code(value as T)
}
inline fun <T> Optional<T>.or(code: () -> T): T {
ifPresent { return it }
return code()
}
The first problem with this Optional is public constructor, which allows creating instances with arguments of not matching type.
The second problem was noticed at testing time. Here is the failed test:
emptyOr { Optional.EMPTY }.value assertEql null
fun <T> emptyOr(other: () -> T): T = Optional.EMPTY.or(other)
Exception:
Exception ClassCastException: Optional$NULL cannot be cast to Optional
at (Optional.kt:42) // emptyOr { Optional.EMPTY }.value assertEql null
If I remove inline modifier from Optional, the test will pass.
Q: Is there any way to fix these problems without removing inline modifier from Optional?
1 Examples include some context. Please read them fully before writing that I added incorrect links.
I implemented exactly the same utility in one of my projects: OptionalValue.kt. My implementation is very similar to yours, it is also an inline/value class, so it should be cpu/memory efficient and it passes all tests I throw at it.
Regarding your first question: about a public constructor. There is an annotation specifically for this case: #PublishedApi. I tried to reproduce ClassCastException from your example, but it worked for me without problems, so I believe it was a bug in Kotlin itself (?).
Also, to answer the question why do we need double nullability, I explained my point here
Here is my function:
operator infix fun List<Teacher>.get(int: Int): Teacher {
var t = Teacher()
t.name = "asd"
return t ;
}
and my usage:
b[0].teachers[1].name
tip: b is an object that has List< Teacher > property
and the errorEmpty list doesn't contain element at index 1.
why this override operator function doesn't work?
In Kotlin, you cannot shadow a member function with an extension. A member always wins in the call resolution. So, you basically cannot call an extension with a signature same to that of a member function, that is present in the type that was declared or inferred for the expression.
class C {
fun foo() { println("member") }
}
fun C.foo() { println("extension") }
C().foo() // prints "member"
In your case, the member function is abstract operator fun get(index: Int): E defined in kotlin.collections.List.
See the language reference: Extensions are resolved statically
As voddan mentions in the comment, you can't overshadow a method with an extension. However, there is a way to get around this with some polymorphism. I don't think I would recommend doing this in your case, but I guess it shows off a cool Kotlin feature.
If b[0] returns an object of type B, you could do this in that class:
data class B(private val _teachers: List<Teacher> = emptyList()) {
private class Teachers(private val list: List<Teacher>) : List<Teacher> by list {
override operator fun get(int: Int): Teacher {
var t = Teacher()
t.name = "asd"
return t ;
}
}
val teachers: List<Teacher> = Teachers(_teachers)
}
fun main(args: Array<String>) {
println(B().teachers[0].name) // Prints "asd"
}
When I override the get-function it will affect everyone that uses the B class, not just where you would import the extension-function.
Note that I am delegating all other method-calls on the Teachers-class through to the underlying list.