when i run these lines of code for binary classification it is running well without any problem and get a good result, but when i try to make it for many classes e.g 3 classes it give "NaN" in predict result
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2enter code hereD(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 3, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('data/train',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('data/test',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
classifier.fit_generator(training_set,
steps_per_epoch = 240 ,
epochs = 25,
validation_data = test_set,
validation_steps = 30)
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('2.jpeg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
i tried these lines of code with loss function "binary" with 2 classes it worked well without any problems and get a good result that helped me with my work and the accuracy approximately '93%' .
but my project based on multi class classification, so i tried to change the loss function to 'categorical_crossentropy' and the class mod in fit_generator to 'categorical' to make it multi class, the accuracy start with 60% and grows up to 99 and suddenly drop down to 33%.
the expected result the labels of the classes
the actual result is "NaN".
thanks in advance.
For multi-class classification, usually softmax is applied on the last dense layer instead of sigmoid. Change it to softmax to see whether the issue is still there.
Related
I'm using a PDF to build my first Convolutional Nerual Network using cats and dogs and am encountering a consistent error. The text is: WARNING:tensorflow:sample_weight modes were
coerced from
...
to
['...']
WARNING:tensorflow:sample_weight modes were coerced from
...
to
['...']
The relevant code is pasted in two sections below. Any help would be appreciated because I'm hitting a wall in regards to this.
This top bit is working but may be relevant:
#Build the network
#Import needed layers and models from tensorflow.keras
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, Dropout
from tensorflow.keras.models import Sequential
#Build model--Use sequential value--Most common
model = models.Sequential()
#Input layer
model.add(layers.Conv2D(32, (3,3), activation = 'relu',
input_shape = (150, 150, 3)))
model.add(layers.MaxPooling2D(2,2))
#First hidden layer
model.add(layers.Conv2D(64, (3,3), activation = 'relu'))
model.add(layers.MaxPooling2D(2,2))
#Second hidden layer
model.add(layers.Conv2D(128, (3,3), activation = 'relu'))
model.add(layers.MaxPooling2D(2,2))
#Third hidden layer
model.add(layers.Conv2D(128, (3,3), activation = 'relu'))
model.add(layers.MaxPooling2D(2,2))
#Fourth hidden layer
model.add(layers.Flatten())
model.add(layers.Dense(512, activation = 'relu'))
#Output layer
model.add(layers.Dense(1, activation = 'sigmoid'))
#
from tensorflow.keras import optimizers
#Compilation step
model.compile(loss = 'binary_crossentropy',
optimizer= 'adam',
metrics=['acc'])
#Read images from directories
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255)
test_datagen = ImageDataGenerator(rescale = 1./255)
train_generator = test_datagen.flow_from_directory(
train_dir,
target_size = (150, 150),
batch_size = 20,
class_mode = 'binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size = (150, 150),
batch_size = 20,
class_mode = 'binary')
Fit model with a batch generator
This part of the code is what causes the error
history = model.fit_generator(
train_generator,
steps_per_epoch = 100,
epochs = 30,
validation_data = validation_generator,
validation_steps = 50)
As a final note, this code is in Python 3 and uses the kagglecatsanddogs database from Microsoft
The below Warning is fixed in the Nightly Version of Tensorflow and will be included in the Next Stable Version, Tensorflow 2.2
WARNING:tensorflow:sample_weight modes were coerced from ... to
['...'] WARNING:tensorflow:sample_weight modes were coerced from ... to
['...']
Currently, to make if work, please install Tensorflow Nightly Version as shown below:
!pip install tf-nightly
For more details, please refer this Github Issue.
I am trying to train a model on Google Colab, in order to play around with training on TPU. However, I am running into the following error:
AttributeError Traceback (most recent call last)
<ipython-input-82-e74efc36d872> in <module>()
----> 1 tpu_model.fit_generator(training_set, steps_per_epoch = 8000, epochs = 25)
2 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/callbacks.py in configure_callbacks(callbacks, model, do_validation, batch_size, epochs, steps_per_epoch, samples, verbose, count_mode, mode)
118 callback_list.model.stop_training = False
119 # pylint: disable=protected-access
--> 120 if callback_list.model._ckpt_saved_epoch is not None:
121 # The attribute `_ckpt_saved_epoch` is supposed to be None at the start of
122 # training (it should be made None at the end of successful multi-worker
AttributeError: 'KerasTPUModel' object has no attribute '_ckpt_saved_epoch'
While trying to run the following code.
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import zipfile
print(tf.VERSION)
local_zip = '/home/cats_and_dogs_filtered.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/home')
zip_ref.close()
def create_model():
classifier = tf.keras.models.Sequential()
classifier.add(layers.Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))
classifier.add(layers.Conv2D(32, (3, 3), activation= 'relu'))
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))
classifier.add(layers.Flatten())
classifier.add(layers.Dense(units=128, activation= 'relu'))
classifier.add(layers.Dense(units=1, activation= 'sigmoid'))
return classifier
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)
training_set = train_datagen.flow_from_directory('/home/cats_and_dogs_filtered/train', target_size = (64, 64), batch_size = 32, class_mode = 'binary')
model = create_model()
TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR']
tpu_model = tf.contrib.tpu.keras_to_tpu_model( model, strategy=tf.contrib.tpu.TPUDistributionStrategy(tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER)))
tpu_model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
tpu_model.save_weights('./tpu_model.h5', overwrite=True)
tpu_model.fit_generator(training_set, steps_per_epoch = 8000, epochs = 25)
I am not sure what is going on. I used similar code to train it on CPU (takes a long time to train).
I am following a course on deep learning and I am doing right now the CNN networks the train set is 8000 photos 4000 cats and 4000 dogs the training set is 2000/2000 the size I am using for images is 64x64 with RGB. I am using Keras with 2 conv2d/maxpool layers of 32 filters a flatten layer and two dense layers of 128 and 1 output. My problem is that this setup is performing at 15 minutes per epoch and for 25 epochs that means 6 Hours of training at least plus sometimes on some epochs is freezing for sometimes at 7999/8000 I am running this on windows 10 and anaconda with python 3.7 and TensorFlow 1.13. Is this a good performance or I can improve it? I was expecting from the new Turing architecture better performances.
# -*- coding: utf-8 -*-
# Part 1 - Building the convolutional neural network
import tensorflow as tf
from keras import backend as K
config = tf.ConfigProto(intra_op_parallelism_threads=6,
inter_op_parallelism_threads=6,
allow_soft_placement=True,
device_count = {'CPU' : 1,
'GPU' : 1}
)
session = tf.Session(config=config)
K.set_session(session)
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
weights = classifier.get_weights()
#Part 2 - Fiting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
classifier.save("my first model")
Thank you
I'm using the following keras code with tensorflow backend to classify the difference between dog and a cat. It is not predicting any image above 800x800 image. How can I predict or resize the image to predict an hd image.
Code to train:
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import load_img, img_to_array
from keras.models import model_from_json
from scipy.misc import imresize
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(
training_set,
samples_per_epoch=80,
nb_epoch=100,
validation_data=test_set,
nb_val_samples=2000
)
print(training_set.class_indices)
Code to predict:
from keras.models import model_from_json
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
# load weights into new model
model.load_weights("model.h5")
# evaluate loaded model on test data
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
import shutil
import matplotlib.pyplot as plt
import requests
url = raw_input("Please enter the image url/link")
response = requests.get(url, stream=True)
with open('test.jpg', 'wb') as out_file:
shutil.copyfileobj(response.raw, out_file)
from keras.preprocessing import image
import numpy as np
test = image.load_img('test.jpg')
test = image.img_to_array(test)
test = np.expand_dims(test, axis=0)
result = model.predict(test)
if result[0][0] == 1:
prediction = 'dog'
print prediction
else:
prediction = 'cat'
print prediction
According to the Keras docs you can just specify the target size using:
test = image.load_img('test.jpg', target_size=(224, 224))
see https://keras.io/applications/ for an example.
I have four variables train_X, train_Y, test_X, test_Y, where train_X, train_Yare the training set, and test_X, test_Yare the test set. I have the following Keras neural network
from keras.models import Sequential, Model
from keras.optimizers import RMSprop
from keras.layers import Input, Dense, Convolution2D, LSTM, MaxPooling2D, \
UpSampling2D, RepeatVector, Flatten, Dropout, Activation
from keras.callbacks import TensorBoard
from keras.preprocessing.image import ImageDataGenerator
idg = ImageDataGenerator()
nb_epoch = 25
idg.fit(train_X)
input_data = Input(shape=(100, 100, 1))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(input_data)
pool1 = MaxPooling2D((2, 2), border_mode='same')(conv1)
conv2 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(pool1)
pool2 = MaxPooling2D((2, 2), border_mode='same')(conv2)
conv3 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool2)
pool3 = MaxPooling2D((2, 2), border_mode='same')(conv3)
flatten = Flatten()(pool3)
dense1 = Dense(64)(flatten)
activation = Activation('relu')(dense1)
dropout = Dropout(0.5)(activation)
dense2 = Dense(1)(dropout)
output_data = Activation('sigmoid')(dense2)
model = Model(input_data, output_data)
model.compile(optimizer='adadelta', loss='mean_squared_error')
model.fit_generator(idg.flow(train_X, train_Y, batch_size=32, seed = 0),
samples_per_epoch = len(train_X), nb_epoch = nb_epoch,
validation_data = (test_X, test_Y), callbacks = [TensorBoard(log_dir='log_dir')])
However, the following line is giving me zeros for everything:
predictions = model.predict(test_X)
I checked obvious things, such as test_X being zero. My guess is that the problem is some kind of vanishing gradient issue. Any help is appreciated; thanks!