Run code in main thread when IO thread dispatch completes? - kotlin

I'm working with livedata. I want to run some arbitrary code in IO and then once that has completed, run some arbitrary code in the Main thread.
In JavaScript, you can accomplish something like this by chaining promises together. I know Kotlin is different, but that's at least a framework I'm coming from that I understand.
I have a function that will sometimes be called from Main and sometimes from IO, but it requires no special IO features itself. From within class VM: ViewModel():
private val mState = MyState() // data class w/property `a`
val myLiveData<MyState> = MutableLiveData(mState)
fun setVal(a: MyVal) {
mState = mState.copy(a=a)
myLiveData.value = mState
}
fun buttonClickHandler(a: MyVal) {
setVal(a) // Can execute in Main
}
fun getValFromDb() {
viewModelScope.launch(Dispatchers.IO) {
val a: MyVal = fetchFromDb()
setVal(a) // Error! Cannot call setValue from background thread!
}
}
Seems to me the obvious way would be to execute val a = fetchFromDb() from IO and then pull setVal(a) out of that block and into Main.
Is there a way to accomplish this? I don't see a conceptual reason why this feature could not exist. Is there some idea like
doAsyncThatReturnsValue(Dispatchers.IO) { fetchFromDb()}
.then(previousBlockReturnVal, Dispatchers.Main) { doInMain() }
that could be run in a ViewModel?
Please substitute "coroutine" for "thread" wherever appropriate above. :)

Launch is fine. You just have to switch around the dispatchers and use withContext:
fun getValFromDb() {
// run this coroutine on main thread
viewModelScope.launch(Dispatchers.Main) {
// obtain result by running given block on IO thread
// suspends coroutine until it's ready (without blocking the main thread)
val a: MyVal = withContext(Dispatchers.IO){ fetchFromDb() }
// executed on main thread
setVal(a)
}
}

Related

How to cancel kotlin coroutine with potentially "un-cancellable" method call inside it?

I have this piece of code:
// this method is used to evaluate the input string, and it returns evaluation result in string format
fun process(input: String): String {
val timeoutMillis = 5000L
val page = browser.newPage()
try {
val result = runBlocking {
withTimeout(timeoutMillis) {
val result = page.evaluate(input).toString()
return#withTimeout result
}
}
return result
} catch (playwrightException: PlaywrightException) {
return "Could not parse template! '${playwrightException.localizedMessage}'"
} catch (timeoutException: TimeoutCancellationException) {
return "Could not parse template! (timeout)"
} finally {
page.close()
}
}
It should throw exception after 5 seconds if the method is taking too long to execute (example: input potentially contains infinite loop) but it doesent (becomes deadlock I assume) coz coroutines should be cooperative. But the method I am calling is from another library and I have no control over its computation (for sticking yield() or smth like it).
So the question is: is it even possible to timeout such coroutine? if yes, then how?
Should I use java thread insted and just kill it after some time?
But the method I am calling is from another library and I have no control over its computation (for sticking yield() or smth like it).
If that is the case, I see mainly 2 situations here:
the library is aware that this is a long-running operation and supports thread interrupts to cancel it. This is the case for Thread.sleep and some I/O operations.
the library function really does block the calling thread for the whole time of the operation, and wasn't designed to handle thread interrupts
Situation 1: the library function is interruptible
If you are lucky enough to be in situation 1, then simply wrap the library's call into a runInterruptible block, and the coroutines library will translate cancellation into thread interruptions:
fun main() {
runBlocking {
val elapsed = measureTimeMillis {
withTimeoutOrNull(100.milliseconds) {
runInterruptible {
interruptibleBlockingCall()
}
}
}
println("Done in ${elapsed}ms")
}
}
private fun interruptibleBlockingCall() {
Thread.sleep(3000)
}
Situation 2: the library function is NOT interruptible
In the more likely situation 2, you're kind of out of luck.
Should I use java thread insted and just kill it after some time?
There is no such thing as "killing a thread" in Java. See Why is Thread.stop deprecated?, or How do you kill a Thread in Java?.
In short, in that case you do not have a choice but to block some thread.
I do not know a solution to this problem that doesn't leak resources. Using an ExecutorService would not help if the task doesn't support thread interrupts - the threads will not die even with shutdownNow() (which uses interrupts).
Of course, the blocked thread doesn't have to be your thread. You can technically launch a separate coroutine on another thread (using another dispatcher if yours is single-threaded), to wrap the libary function call, and then join() the job inside a withTimeout to avoid waiting for it forever. That is however probably bad, because you're basically deferring the problem to whichever scope you use to launch the uncancellable task (this is actually why we can't use a simple withContext here).
If you use GlobalScope or another long-running scope, you effectively leak the hanging coroutine (without knowing for how long).
If you use a more local parent scope, you defer the problem to that scope. This is for instance the case if you use the scope of an enclosing runBlocking (like in your example), which makes this solution pointless:
fun main() {
val elapsed = measureTimeMillis {
doStuff()
}
println("Completely done in ${elapsed}ms")
}
private fun doStuff() {
runBlocking {
val nonCancellableJob = launch(Dispatchers.IO) {
uncancellableBlockingCall()
}
val elapsed = measureTimeMillis {
withTimeoutOrNull(100.milliseconds) {
nonCancellableJob.join()
}
}
println("Done waiting in ${elapsed}ms")
} // /!\ runBlocking will still wait here for the uncancellable child coroutine
}
// Thread.sleep is in fact interruptible but let's assume it's not for the sake of the example
private fun uncancellableBlockingCall() {
Thread.sleep(3000)
}
Outputs something like:
Done waiting in 122ms
Completely done in 3055ms
So the bottom line is either live with this long thing potentially hanging, or ask the developers of that library to handle interruption or make the task cancellable.

Difference between GlobalScope and runBlocking when waiting for multiple async

I have a Kotlin Backend/server API using Ktor, and inside a certain endpoint's service logic I need to concurrently get details for a list of ids and then return it all to the client with the 200 response.
The way I wanted to do it is by using async{} and awaitAll()
However, I can't understand whether I should use runBlocking or GlobalScope.
What is really the difference here?
fun getDetails(): List<Detail> {
val fetched: MutableList<Details> = mutableListOf()
GlobalScope.launch { --> Option 1
runBlocking { ---> Option 2
Dispatchers.IO --> Option 3 (or any other dispatcher ..)
myIds.map { id ->
async {
val providerDetails = getDetails(id)
fetched += providerDetails
}
}.awaitAll()
}
return fetched
}
launch starts a coroutine that runs in parallel with your current code, so fetched would still be empty by the time your getDetails() function returns. The coroutine will continue running and mutating the List that you have passed out of the function while the code that retrieved the list already has the reference back and will be using it, so there's a pretty good chance of triggering a ConcurrentModificationException. Basically, this is not a viable solution at all.
runBlocking runs a coroutine while blocking the thread that called it. The coroutine will be completely finished before the return fetched line, so this will work if you are OK with blocking the calling thread.
Specifying a Dispatcher isn't an alternative to launch or runBlocking. It is an argument that you can add to either to determine the thread pool used for the coroutine and its children. Since you are doing IO and parallel work, you should probably be using runBlocking(Dispatchers.IO).
Your code can be simplified to avoid the extra, unnecessary mutable list:
fun getDetails(): List<Detail> = runBlocking(Dispatchers.IO) {
myIds.map { id ->
async {
getDetails(id)
}
}.awaitAll()
}
Note that this function will rethrow any exceptions thrown by getDetails().
If your project uses coroutines more generally, you probably have higher level coroutines running, in which case this should probably be a suspend function (non-blocking) instead:
suspend fun getDetails(): List<Detail> = withContext(Dispatchers.IO) {
myIds.map { id ->
async {
getDetails(id)
}
}.awaitAll()
}

Wear OS Tiles and Media Service

The Wear OS tiles example is great, not so much of an issue but how would one start the background media service that play the songs selected in the primary app, when every I try to start the service, I get the following error. The is no UI thread to reference and the documentation only has to methods for onclick, LoadAction and LaunchAction.
override fun onTileRequest(request: TileRequest) = serviceScope.future {
when(request.state!!.lastClickableId){
"play"-> playClicked()
}....
suspend fun playClicked(){
try {
// Convert the asynchronous callback to a suspending coroutine
suspendCancellableCoroutine<Unit> { cont ->
mMediaBrowserCompat = MediaBrowserCompat(
applicationContext, ComponentName(applicationContext, MusicService::class.java),
mMediaBrowserCompatConnectionCallback, null
)
mMediaBrowserCompat!!.connect()
}
}catch (e:Exception){
e.printStackTrace()
} finally {
mMediaBrowserCompat!!.disconnect()
}
}
ERROR
java.lang.RuntimeException: Can't create handler inside thread Thread[DefaultDispatcher-worker-1,5,main] that has not called Looper.prepare()
serviceScope is running on Dispatchers.IO, you should use withContext(Dispatchers.Main) when making any calls to MediaBrowserCompat.
Responding to the answer above, the serviceScope.future creates a CoroutineScope that will cause the future returned to the service to wait for all child jobs to complete.
If you want to have it run detached from the onTileRequest call, you can run the following, which will launch a new job inside the application GlobalScope and let the onTileRequest return immediately.
"play" -> GlobalScope.launch {
}
The benefit to this is that you don't throw a third concurrency model into the mix, ListenableFutures, Coroutines, and now Handler. LF and Coroutines are meant to avoid you having to resort to a third concurrency option.
Thanks Yuri that worked but, it ended up blocking the UI thread, the solution that is work is below
fun playClicked(){
mainHandler.post(playSong)
}
private val playSong: Runnable = object : Runnable {
#RequiresApi(Build.VERSION_CODES.N)
override fun run() {
mMediaBrowserCompat = MediaBrowserCompat(
applicationContext, ComponentName(applicationContext, MusicaWearService::class.java),
mMediaBrowserCompatConnectionCallback, null
)
mMediaBrowserCompat!!.connect()
}
}
Cool Yuri, the below worked and I think is more efficient
fun playClicked() = GlobalScope.launch(Dispatchers.Main) {
mMediaBrowserCompat = MediaBrowserCompat(
applicationContext, ComponentName(applicationContext, MusicaWearService::class.java),
mMediaBrowserCompatConnectionCallback, null
)
mMediaBrowserCompat!!.connect()
}

Kotlin coroutines - how to run in background and use result in the caller thread?

The main idea is to have non-suspend function runInBackgroundAndUseInCallerThread(callback: (SomeModel) -> Unit) which run some work asynchronously in background (another thread) and after work is done - run callback in the caller thread (thread that launched runInBackgroundAndUseInCallerThread).
Below I wrote an example code, but I'm not sure how correct it is and whether it is possible at all. With the println("1/2/3/...") I marked the desired call order.
getDispatcherFromCurrentThread - if is possible to implement this function, then solution can be used, but I don't know how to implement it and is it right to do it like that at all.
Therefore, please do not consider it as the only solution.
import kotlinx.coroutines.*
import kotlin.concurrent.thread
fun main() {
println("1")
runInBackgroundAndUseInCallerThread {
println("4")
println("Hello ${it.someField} from ${Thread.currentThread().name}") // should be "Hello TestField from main"
}
println("2")
thread(name = "Second thread") {
runInBackgroundAndUseInCallerThread {
println("5")
println("Hello ${it.someField} from ${Thread.currentThread().name}") // should be "Hello TestField from Second thread"
}
}
println("3")
Thread.sleep(3000)
println("6")
}
fun runInBackgroundAndUseInCallerThread(callback: (SomeModel) -> Unit) {
val dispatcherFromCallerThread: CoroutineDispatcher = getDispatcherFromCurrentThread()
CoroutineScope(Dispatchers.IO).launch {
val result: SomeModel = getModelResult()
launch(dispatcherFromCallerThread) { callback(result) }
}
}
data class SomeModel(val someField: String)
suspend fun getModelResult(): SomeModel {
delay(1000)
return SomeModel("TestField")
}
fun getDispatcherFromCurrentThread(): CoroutineDispatcher {
// TODO: Create dispatcher from current thread... How to do that?
}
Unless the thread is designed to work as a dispatcher there isn't a universal way to make it do so.
The only way which comes to mind is the fact that runBlocking is re-entrant and will create an event-loop in the existing thread, however it will block all non-coroutine code from executing on that thread until it completes.
This ends up looking like:
fun runInBackgroundAndUseInCallerThread(callback: (SomeModel) -> Unit) {
callback(runBlocking(Dispatchers.IO) {
getModelResult()
})
}
dispatcher really is a coroutineContext and it is meaningful when used inside a scope
thus if you want pass dispatcher of parent scope to child scope you can do it.
GlobalScope.launch {
val dispatcher = this.coroutineContext
CoroutineScope(dispatcher).launch {
}
}
therefor getDispatcherFromCurrentThread should be like this.
fun getDispatcherFromCurrentThread(scope: CoroutineScope): CoroutineContext {
return scope.coroutineContext
}
and
GlobalScope.launch {
val dispatcher = getDispatcherFromCurrentThread(this)
CoroutineScope(dispatcher).launch {
}
}
which run some work asynchronously in background (another thread) and after work is done - run callback in the caller thread
First try to answer this question: what is the calling thread supposed to do while the background work is in progress?
Clearly it can't go on to the next line of your code, which is supposed to run after finishing the background work.
You also don't want it to block and wait.
What code should it run, then?
And the only reasonable answer is as follows: the calling thread should, at its topmost level of execution (entry-point function), run an infinite event loop. The code in your question should be inside an event handler submitted to the event loop. At the point you want to wait for the background work, the handler must return so the thread can go on handling other events, and you must have another handler ready to submit when the background work is done. This second handler, corresponding to your callback, is called the continuation and Kotlin provides it automatically. You don't in fact need your own callback.
However, now the most sensitive issue arises: how will you submit the continuation to the event loop? This is not something you can abstract over, you must use some API specific to the event loop in question.
And this is why Kotlin has the notion of a Dispatcher. It captures the case-specific concern of dispatching continuations to the desired thread. You seem to want to solve it without the need to write a dispatcher dedicated to each specific event loop, and unfortunately this is impossible.

Project Reactor - subscribe on parallel scheduler doesn't work

I'm looking at examples and reading documentation and I've found some problems while trying to subscribe on Flux in a parallel manner.
I have a 3 functions, as below.
private val log = LoggerFactory.getLogger("main")
private val sequence = Flux.just(1, 2)
fun a() {
sequence.subscribeOn(Schedulers.parallel()).subscribe { log.info("*** {}", it) }
sequence.subscribe { log.info(">>> {}", it) }
}
fun b() {
sequence.subscribe { log.info(">>> {}", it) }
}
fun c() {
sequence.subscribeOn(Schedulers.parallel()).subscribe { log.info("*** {}", it) }
}
Now, when I run each method separately I have a proper output from functions a() and b(), but output from c() is empty. Is that to be expected, is it by design? If so, why is that happening?
Flux.just(...) captures value(s) and thus is optimized to execute immediately in the subscribing Thread.
When you use subscribeOn, you change that subscribing Thread from main to something else, making the just truly asynchronous.
In a(), without a subscribeOn that second just would block the main thread just enough that the test doesn't finish before the asynchronous alternative completes.
In c(), there is no such blocking of the main thread. As a consequence, the test terminates before the asynchronous just has had time to emit anything, and that is why you see no output.
To make that more visible, add a Thread.sleep(10) and you'll see some output.