Related
Both concepts are very similar it is hard to tell which is which.
Please give an example of how you would differentiate them.
All GRASP concepts are linked, so you should consider them all together:
"information expert" - question is "Which object should have needed
behavior?" (Please see
http://en.wikipedia.org/wiki/Domain-driven_design) like one of
the answers for this question.
"cohesion" - question is "How many different behaviors object have"
http://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
You should not learn these concepts without coding practice, write code/make refactoring - and you will get it.
GRASP Design Patterns, as very rightly said here (Is Information Expert from GRASP and Modell from MVC the same?) are design principles and support you to evaluate your design decisions and implementation.
"Cohesion" in GRASP is an evaluative design pattern alongside "coupling". Thus you have to use them to analyse your design to figure out how cohesive and loosely coupled it is, which directly enhance re-usability and extensibility.
On the other hand, "Information Expert" can assist you in identifying which class should be given a particular responsibility. It tells you to assign a certain responsibility to the class which has the most information about it. |
Therefore in a simple shopping cart use case, you would give, A ShoppingItem to calculateItemPrice() based on quantity and unit price, and ShoppingCart to calculateTotalPrice().
This becomes a crucial factor, and note that most GOF design patterns actually are supporting this GRASP concept.
Most importantly. If you applied Information Expert pattern in your design, it should provide you with high cohesion in terms evaluating your design. Thats how Information Expert and Cohesion would go hand in hand, just like all other GRASP patterns.
Resources: http://www.cs.bgu.ac.il/~oosd051/uploads/stuff/ApplyingUMLandPatterns.pdf
I am working on a very large ASP.NET application. The problem is that there is not a lot of logic behind the design. The original developer chose about ten classes and that was it. There is high coupling and low cohesion. For example, clsPerson holds all the functionality for Person and breakes most of the rules of SOLID.
I have started to incorporate design patterns into my toolkit. My question is: what is the best way to incorporate badly designed classes into the better design. For example, if you had a class clsStudent that contained all the Student functionality to date and then created a class called clsUndergraduate then would you simply derive clsStudent? I realise that a lot of this depends on context but I am looking for general guidelines.
There is a lot of information online that talks about SOLID, but not a lot that talks about how to adapt an existing application to be SOLID.
It could be argued that you should only aim to implement SOLID principles as, and when the need arrives. However, I'm an advocate and believe that it's not difficult to add elements of SOLIDity to your design without too much overhead or heartache.
Trying to move an existing model to a more SOLID model can be difficult. I would suggest taking small, manageable parts and gradually refactoring. If you have the safety net of automated tests, this should be achievable with confidence. If not, make sure you fully understand the scope of the changes you are making. It's easy to introduce subtle bugs. Ultimately, serious changes will be likely to introduce new tests anyway.
Complying with the SRP is likely to be the easiest place to start. Try to define the main responsibility of each class. If they currently have more than one responsibility, note them and look at how these responsibilities can be moved out and elsewhere. For example, many 'God' classes will be managing persistence, validation, initialisation, etc. along with business logic. See if you can begin to take the persistence code out and put it into mappers/repositories/etc.
If you do this logically and sequentially, my experience is that, as you go, making lots of mistakes along the way, the relevance and importance of the other principles will emerge and make themselves, sort of, obvious.
I found that as I experimented with SOLID principles, by reading and re-reading (mainly Bob Martin and ObjectMentor) more clarity emerges as you have practical experience of implementation. Don't forget the opening principles defined in the Gang of Four, also. Concepts like 'favour composition over inheritance' go hand-in-hand with SOLID OO principles.
Bear in mind that SOLID code is generally more complex than non-SOLID code and can, therefore, be harder to maintain and debug by those not familiar with it. Skeptics might lay the accusation of 'over-engineering' at your door, which can be difficult to argue against with those who haven't wrestled with enhancing/fixing tightly coupled, incohesive code.
Good luck. Please feel free to ask more as I'd love to hear the input of others on this subject. It's scope is wide and varied.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I asked a question previously about Dataset vs Business Objects
.NET Dataset vs Business Object : Why the debate? Why not combine the two?
and I want to generalize the question here: where is the proof that OOP is really suitable for very complex problems ? Let's take a MMO Game Engine for example. I'm not specialist at all but as I read this article, it clearly stands that OOP is far from being enough:
http://t-machine.org/index.php/2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/
It concludes:
Programming well with Entity Systems is very close to programming with a Relational Database. It would not be unreasonable to call ES’s a form of “Relation Oriented Programming”.
So isn't OOP trying to get rid off something that is here to stay ?
OOP is non-linear, Relational is linear, both are necessary depending on the part of a system so why try to eliminate Relational just because it isn't "pure" Object. Is OOP an end by itself ?
My question is not is OOP usefull. OOP is usefull, my question is rather why the purists want to do "pure" OOP ?
As the author of the linked post, I thought I'd throw in a couple of thoughts.
FYI: I started seriously (i.e. for commercial work) using OOP / ORM / UML in 1997, and it took me about 5 years of day to day usage to get really good at it IMHO. I'd been programming in ASM and non-OOP languages for about 5 years by that point.
The question may be imperfectly phrased, but I think it's a good question to be asking yourself and investigating - once you understand how to phrase it better, you'll have learnt a lot useful about how this all hangs together.
"So isn't OOP trying to get rid off something that is here to stay ?"
First, read Bjarne's paper here: http://www.stroustrup.com/oopsla.pdf
IMHO, no-one should be taught any OOP without reading that paper (and re-reading after they've "learnt" OOP). So many many people misunderstand what they're dealing with.
IME, many university courses don't teach OOP well; they teach people how to write methods, and classes, and how to use objects. They teach poorly why you would do these things, where the ideas come from, etc. I think much of the mis-usage comes from that: almost a case of the blind leading the blind (they aren't blind in "how" to use OOP, they're just blind in "why" to use OOP).
To quote from the final paragraphs of the paper:
"how you support good programming techniques and good design techniques matters more than labels and buzz words. The fundamental idea is simply to improve design and programming through abstraction. You want to hide details, you want to exploit any commonality in a system, and you want to make this affordable.
I would like to encourage you not to make object-oriented a meaningless term. The notion of ‘‘object-oriented’’ is too frequently debased:
– by equating it with good,
– by equating it with a single language, or
– by accepting everything as object-oriented.
I have argued that there are–and must be–useful techniques beyond object-oriented programming and design. However, to avoid being totally misunderstood, I would like to emphasize that I wouldn’t attempt a serious project using a programming lan-
guage that didn’t at least support the classical notion of object-oriented programming. In addition to facilities that support object-oriented programming, I want –and C++ provides features that go beyond those in their support for direct expression of concepts and relationships."
Now ... I'd ask you ... of all the OOP programmers and OOP projects you've seen, how many of them can honestly claim to have adhered to what Bjarne requests there?
IME, less than the majority.
Bjarne states that:
"The fundamental idea is simply to improve design and programming through abstraction"
...and yet many people invent for themselves a different meaning, something like:
"The fundamental idea is that OOP is good, and everything-not-OOP is inferior"
Programmers who have programmed sequentially with ASM, then later ASM's, then pascal, then C, then C++, and have been exposed to the chaos that was programming pre-encapsulation etc tend to have better understanding of this stuff. They know why OOP came about, what it was trying to solve.
Funnily enough, OOP was not trying to solve every programming problem. Who'd have htought it, to say how it's talked about today?
It was aimed at a small number of problems that were hugely dangerous the bigger your project got, and which it turned out to be somewhere between "good" and "very good" at solving.
But even some of them it isn't any better than merely "good" at solving; there are other paradigms that are better...
All IMHO, of course ;)
Systems of any notable complexity are not linear. Even if you worked really hard to make a system one linear process, you're still relying on things like disks, memory and network connections that can be flaky, so you'll need to work around that.
I don't know that anyone thinks OOP is the final answer. It's just a way of dealing with complexity by trying to keep various problems confined to the smallest possible sphere so the damage they do when they blow up is minimized. My problem with your question is that it assumes perfection is possible. If it were, I could agree OOP isn't necessary. It is for me until someone comes up with a better way for me to minimize the number of mistakes I make.
Just read yr article about Entity Systems, which compares ES to OOP, and it is flagrantly wrong about several aspects of OOP. for e.g., When there are 100 instances of a class, OOP does not mandate that there be 100 copies of the classes methods loaded in memory, only one is necessary. Everything that ES purports to be able to do "better" than OOP because it has "Components", and "Systems", OOP supports as well using interfaces and static classes, (and/or Singletons).
And OOP more naturally fits with the real-world, as any real or imagined Problem Domain, consisting of multiple physical and/or non-physical items and abstractions, and the relationships between them, can be modeled with an appropriately designed hiearchical OOP class structure.
What we try to do is put an OO style on top of a relational system. In C# land this gets us a strongly typed system so that everything from end to end can be compiled and tested. The database has a hard time being tested, refactored, etc. OOP allows us to organize our application into layers and hiearchies which relational doesn't allow.
Well you've got a theoretical question.
Firstly let me agree with you that OOP is not a solve-all solution. It's good for somethings, it's not good for others. But that doesn't mean it doesn't scale up. Some horribly complex and huge systems have been designed using OOP.
I think OOP is so popular because it deserves to be. It solves some problems rather wonderfully, it is easy to think in terms of Objects because we can do that without re-programming ourselves.
So until we can all come up with a better alternatives that actually works in practical life, I think OOP is a pretty good idea and so are relational databases.
There is really no limit to what OOP can deal with - just as there is no real limit to what C can deal with, or assembler for that matter. All are Turing-complete, which is all you really need.
OOP simply gives you a higher-level way of breaking down the program, just as C is a higher-level than assembler.
The article about entity systems does not say that OO cannot do this - in fact, it sounds like they are using OOP to implement their Entities, Components, etc. In any complex domain there will be different ways of breaking it down, and using OOP you can break it down to the object/class level at some point. This does not preclude having higher-level conceptual frameworks which are used to design the OOP system.
The problem isn't the object oriented approach in most situations, the problem is performance and actual development of the underlying hardware.
The OO paradigm approach software development by providing us with a metaphor of the real world, were we have concepts which defines the common accepted and expected properties and behaivour of real objects in the world. Is the way that humans model things and we're able to solve most of the problems with it.
In theory you can define every aspect of a game, system or whatever using OO. In practice if you do, your program will simply behave too slow so the paradigm is messed up by optimizations which trade the simplicity of the model from performance.
In that way, relational databases are not object oriented so we build an object oriented layer between our code and the database... by doing so you lost some of the performance of the database and some of its expressiveness because, from the point of view of OO paradigm a relational database is a full class, is an very complex object that provides information.
From my point of view OO is an almost perfect approach in the theoretical sense of the word, as it maps closely to the way we, humans, think, but it doesn't fit well with the limited resources of the computational development... so we take shortcuts. At the and, performance is far more important than theoretical organization or clearness so this shortcuts become standards or usual practices.
That is, we are adapting the theoretical model to our current limitations. In the times of cobol in the late 70's object oriented was simply impossible... it would imply to many aspects and too little performance so we used a simplified approach, so simplified you didn't have objects or class, you had variables ... but the concept was, in that time, the same. Groups of variables described related concepts, properties that today will feet into an object. Control sequences based on a variable value where used to replace class hierarchies and so on.
I think we've been using OOP for a long time and that we'll continue using it for a long time. As hardware capabilities improve we'll be able to unsimplify the model so that it becomes more adaptable. If I describe perfectly (almost) the concept of a cat (which involves a lot of describing for a lot of concepts involved) that concept will be able to be reused everywhere... the problem here is not, as I've said, with the paradigm itself but with our limitations to implement it.
EDIT: To answer the question about why use pure OO. Every "science" wants to have a complete model to represent things. We have two physic models to describe nature, one at the microscopic level and one for the macroscopic one, and we want to have just one because it simplifies things it provides us with a better way to prove, test and develop things. With OO the same process applies. You can't analytically test and prove a system if the system doesn't follow a precise set of rules. If you are changing between paradigms in a program then your program cannot be properly analized, it has to be disected in each one, analized and then analized again to see that the interactions are correct. It makes a lot more difficult to understand a system because in fact you have two or three system that interact in different ways.
Guys, isn't the question more about ORM than OOP? OOP is a style of programming - the thing that actually gets compared is a Relational Database mapped onto objects.
OOP is actually more than just the ORM! It's also not just the inheritance and polymorphism! It's an extremly wide range of design patterns and above all it's the way we think about programming itself.
Jorge: it's ok that you've pointed out the opitimization part - what you didn't add is that this step should be done last and in 99% cases the slow part is not the OOP.
Now plain and simple: the OOP style with all the principals added to it (clean code, use of design patterns, not to deep inheritance structures and let's not forget unit testing!) it a way to make more people understand what you wrote. That in turn is needed for companies to keep their bussiness secure. That's also a recepie for small teams to have better understanding with the community. It's like a common meta language on top of the programming language itself.
It's always easier to talk about concepts from a purists point of view. Once you're faced with a real life problem things get trickier and the world is no longer just black and white. Just like the author of the article is very thorough in pointing out that they're not doing OOP the "OOP purist" tells you that OOP is the only way to go. The truth is somewhere in between.
There is no single answer, as long as you understand the different ways (OOP, entity systems, functional programming and many more) of doing things and can give good reason for why you're choosing one over the other in any given situation you're more likely to succeed.
About Entity Systems. It's an interesting conception but it brings nothing really new. For example it states:
OOP style would be for each Component to have zero or more methods, that some external thing has to invoke at some point. ES style is for each Component to have no methods but instead for the continuously running system to run it’s own internal methods against different Components one at a time.
But isn't it same as Martin Fowler's anti-pattern called "Anemic Domain Model" (which is extensively used nowadays, in fact) link ?
So basically ES is an "idea on the paper". For people to accept it, it MUST be proven with working code examples. There is not a single word in the article on how to implement this idea on practice. Nothing said about scalability concerns. Nothing said about fault tolerance...
As for your actual question I don't see how Entity Systems described in article can be similar to relational databases. Relational databases have no such thing as "aspects" that are described in the article. In fact, relational - based on tables data structure - is very limited when it comes to working with hierarchical data, for example. More limited than for example object databases...
Could you clarify what exactly you are trying to compare and prove here? OOP is a programming paradigm, one of the many. It's not perfect. It's not a silver bullet.
What does "Relation Oriented Programming" mean? Data-centric? Well, Microsoft was moving towards more data-centric style of programming until they given up on Linq2Sql and fully focused on their O/RM EntityFramework.
Also relational databases isn't everything. There is many different kinds of database architectures: hierarchical databases, network databases, object databases ect. And those can be even more efficient than relational. Relational are so popular for nearly the same reasons why OOP is so popular: it's simple, very easy to understand and most often efficient enough.
Ironically when oo programming arrived made it much easier to build larger systems, this was reflected in the ramp up in software to market.
Regarding scale and complexity, with good design you can build pretty complex systems.
see ddd Eric Evans for some principle patterns on handling complexity in oo.
However not all problem domains are best suited to all languages, if you have the freedom to choose a language choose one that suits your problem domain. or build a dsl if that's more appropriate.
We are software engineers after all, unless there is someone telling you how to do your job, just use the best tools for the job, or write them :)
I've worked with designing databases for a loooong time, and these days I'm working in C# too. OO makes sense to me, but I don't feel that I have a good grounding in the deep theory of OO design.
In database land, there's a lot of theory around how to design the structure of a database, the main notion being normalisation. Normalisation directly steers the structure of a database and to some extent dictates how to arrange entities in a database.
Are there any similar concepts behind how to design the structure of an Object-Oriented program?
What I'm reaching for is one or more underlying theoretical principles which naturally guide the developer into the "correct" design for the solution to a given problem.
Where can I look to find out more?
Is there a go-to work I should read?
Update:
Thanks to everyone for their answers.
What I'm reading seems to say that there is no "Grand Theory of OO Design", but there are a bunch of important principles - which are largely exemplified by design patterns.
Thanks again for your answers :)
Be careful some of the design patterns literature.
There are are several broad species of class definitions. Classes for persistent objects (which are like rows in relational tables) and collections (which are like the tables themselves) are one thing.
Some of the "Gang of Four" design patterns are more applicable to active, application objects, and less applicable to persistent objects. While you wrestle through something like Abstract Factory, you'll be missing some key points of OO design as it applies to persistent objects.
The Object Mentor What is Object-Oriented Design? page has mich of you really need to know to transition from relational design to OO design.
Normalization, BTW, isn't a blanket design principle that always applies to relational databases. Normalization applies when you have update transactions, to prevent update anomalies. It's a hack because relational databases are passive things; you either have to add processing (like methods in a class) or you have to pass a bunch of rules (normalization). In the data warehouse world, where updates are rare (or non-existent) that standard normalization rules aren't as relevant.
Consequently, there's no "normalize like this" for object data models.
In OO Design, perhaps the most important rule for designing persistent objects is the Single Responsibility Principle.
If you design your classes to have good fidelity to real-world objects, and you allocate responsibilities to those classes in a very focused way, you'll be happy with your object model. You'll be able to map it to a relational database with relatively few complexities.
Turns out, that when you look at things from a responsibility point of view, you find that 2NF and 3NF rules fit with sound responsibility assignment. Unique keys still matter. And derived data becomes the responsibility of a method function, not a persistent attribute.
The book "Design Patterns" is your next step.
http://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional/dp/0201633612
But, you don't have to use an OO approach to everything. Don't be religious about it. If a more procedural approach feels more straitforward, then go with that. People new to OO tend to overdue it for a while.
I think Agile Software Development, Principles, Patterns, and Practices is quite good.
It provides a lot of in-depth disccusion of OO principles listed here:
The principles of Object Oriented Design and Dependency Management
SRP — The Single Responsibility Principle
OCP — The Open Closed Principle
LSP — The Liskov Substitution Principle
DIP — The Dependency Inversion Principle
ISP — The Interface Segregation Principle
REP — The Reuse Release Equivalency Principle
CCP — The Common Closure Principle
CRP — The Common Reuse Principle
ADP — The Acyclic Dependencies Principle
SDP — The Stable Dependencies Principle
SAP — The Stable Abstractions Principle
If you're used to building normalized databases, then Object Oriented design should come naturally to you. Your class structures will end up looking a lot like your data structure, with the obvious exception that association tables turn into lists and lookup tables turn into enums within your classes.
All together, I'd say you're a lot better off coming into OO design with a background in Relational Databases than you would be going the other direction.
If you want to really get to grips with O-O, go play with Smalltalk. ST is a pure OO language, and quite in-your-face about it. Once you get over the paradigm hump you've learned OO as you can't really do Smalltalk without it. This is how I first learned OO.
Check the results of this. Learn from each question.
I really liked Head First Design Patterns, which is very approachable, and the excellent Object oriented Design Heuristics by Arthur J. Riel
This site lists 101 title... design patterns, refactoring and other... Have a look at it.. It will be a good starting point...
Go for Object Thinking by David West. An interesting read..
You're from the dark side though.. as per the book;) Database thinking has been the curse of OO programmers all over. They're opposite ends of a spectrum. For instance
Database thinking values the data attribues over everything else.. normalization and creating types based on how they fit into the DB Schema OR the ER diagram.. OO thinking creates types based on behavior and collaboration and does not recognize the data attributes as all important.
Databases come from the scientific people who value formalization and method over everything else. OO comes from the people who use heuristics and rules of thumb and value individuality and social interaction over a hard and fast process.
The point being a COBOL programmer can write COBOL programs even after moving onto a OO Language. Check out any book like Thinking in Java for the first section which invariably details out the tenets of OO (Apprentice).. Follow it up with Object Thinking (journeyman) and in due time.. a master.
Model your objects by keeping real world objects in mind.
We are currently developing automation software for machines. One of those machines has two load ports for feeding it raw material, while all others have only one. In all modules so far, we had the information of the ports (current settings, lot number currently assigned to it etc) as members in the class representing the machine.
We decided to create a new class that holds the information of the ports, and add two LoadPort members to this MachineXY class. If we had thought about it before, we would have done the same for all those single port machines...
You should look at UML, which is an entire process given to OOD.
I'd recommend getting a book (or a couple), because the theory is quite large, most people pick and choose the techniques most appropriate for the project at hand.
Start reading about design patters, from say Martin Fowler. :)
They are the most practical use of OOP.
I am guess you mean OO in the database world.
Object-oriented databases which store objects never did really catch one so you are currently looking mapping objects to relational database. ORM or Object-relational mapping is the term used to describe the software that does this mapping. Ideally this gives you the best of both worlds where developers can internact with the objects and in the database everything is stored in relational tables where standard tuning can take place.
in DBA slang: object-oriented design is nothing else but properly normalized data behind safe operation interfaces, safe meaning, look at the operations, not the data directly
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
I recently read an interesting comment on an OOP related question in which one user objected to creating a "Manager" class:
Please remove the word manager
from your vocabulary when talking
about class names. The name of the
class should be descriptive of its'
purpose. Manager is just another word
for dumping ground. Any
functionality will fit there. The word
has been the cause of many extremely
bad designs
This comment embodies my struggle to become a good object-oriented developer. I have been doing procedural code for a long time at an organization with only procedural coders. It seems like the main strategy behind the relatively little OO code we produce is to break the problem down into classes that are easily identifiable as discrete units and then put the left over/generalized bits in a "Manager" class.
How can I break my procedural habits (like the Manager class)? Most OO articles/books, etc. use examples of problems that are inherently easy to transform into object groups (e.g., Vehicle -> Car) and thus do not provide much guidance for breaking down more complex systems.
First of all, I'd stop acting like procedural code is wrong. It's the right tool for some jobs. OO is also the right tool for some jobs. So is functional. Each paradigm is just a different point of view of computation, and exists because it's convenient for certain problems, not because it's the only right way to program. In principle, all three paradigms are mathematically equivalent, so use whichever one best maps to the problem domain. IMHO, if using a multiparadigm language it's even ok to blend paradigms within a module if different subproblems are best modeled by different worldviews.
Secondly, I'd read up on design patterns. It's hard to understand OO without some examples of the real-world problems it's good for solving. Head First Design Patterns is a good read, as it answers a lot of the "why" of OO.
Becoming good at OO takes years of practice and study of good OO code, ideally with a mentor. Remember that OO is just one means to an end. That being said, here are some general guidelines that work for me:
Favor composition over inheritance. Read and re-read the first chapter of the GoF book.
Obey the Law of Demeter ("tell, don't ask")
Try to use inheritance only to achieve polymorphism. When you extend one class from another, do so with the idea that you'll be invoking the behavior of that class through a reference to the base class. ALL the public methods of the base class should make sense for the subclass.
Don't get hung up on modeling. Build a working prototype to inform your design.
Embrace refactoring. Read the first few chapters of Fowler's book.
The single responsibility principle helps me break objects into manageable classes that make sense.
Each object should do one thing, and do it well without exposing how it works internally to other objects that need to use it.
A 'manager' class will often:
Interogate something's state
Make a decision based on that state
As an antidote or contrast to that, Object-Oriented design would encourage you to design class APIs where you "tell don't ask" the class itself to do things itself (and to encapsulate its own state): for more about "tell don't ask" see e.g. here and here (and maybe someone else has a better explanation of "tell don't ask" but these are first two articles that Google found for me).
It seems like the main strategy the little OO code we produce is to break the problem down into classes that are easily identifiable as discrete units and then put the left over/generalized bits in a "Manager" class.
That may well be true even at the best of times. Coplien talked about this towards the end of his Advanced C++: Programming Styles and Idioms book: he said that in a system, you tend to have:
Self-contained objects
And, "transactions", which act on other objects
Take, for example, an airplane (and I'm sorry for giving you another vehicular example; I'm paraphrasing him):
The 'objects' might include the ailerons, the rudder, and the thrust
The 'manager' or autpilot would implement various commands or transactions
For example, the "turn right" transaction includes:
flaps.right.up()
flaps.left.down()
rudder.right()
thrust.increase()
So I think it's true that you have transactions, which cut across or use the various relatively-passive 'objects'; in an application, for example, the "whatever" user-command will end up being implemented by (and therefore, invoking) various objects from every layer (e.g. the UI, the middle layer, and the DB layer).
So I think it's true that to a certain extent you will have 'bits left over'; it's a matter of degree though: perhaps you ought to want as much of the code as possible to be self-contained, and encapsulating, and everything ... and the bits left over, which use (or depend on) everything else, should be given/using an API which hides as much as possible and which does as much as possible, and which therefore takes as much responsibility (implementation details) as possible away from the so-called manager.
Unfortunately I've only read of this concept in that one book (Advanced C++) and can't link you to something online for a clearer explanation than this paraphrase of mine.
Reading and then practicing OO principles is what works for me. Head First Object-Oriented Analysis & Design works you through examples to make a solution that is OO and then ways to make the solution better.
You can learn good object-oriented design principles by studying design patterns. Code Complete 2 is a good book to read on the topic. Naturally, the best way to ingrain good programming principles into your mind is to practice them constantly by applying them to your own coding projects.
How can I break my procedural habits (like the Manager class)?
Make a class for what the manager is managing (for example, if you have a ConnectionManager class, make a class for a Connection). Move everything into that class.
The reason "manager" is a poor name in OOP is that one of the core ideas in OOP is that objects should manage themselves.
Don't be afraid to make small classes. Coming from a procedural background, you may think it isn't worth the effort to make a class unless it's a thousand lines of code and is some core concept in your domain. Think smaller. A ten line class is totally valid. Make little classes where you see they make sense (a Date, a MailingAddress) and then work your way up by composing classes out of those.
As you start to partition little pieces of your codebase into classes, the remaining procedural code soup will shrink. In that shrinking pool, you'll start to see other things that can be classes. Continue until the pool is empty.
How many OOP programmers does it take to change a light bulb?
None, the light bulb changes itself.
;)
You can play around with an OO language that has very bad procedural support like Smalltalk. The message sending paradigm will force you into OO thinking.
i think you should start it with a good plan.
planning using CLASS Diagrams would be a good start.
you should identify the ENTITIES needed in the applicaiton,
then define each entitie's ATTRIBUTES, and METHODS.
if there are repeated ones, you could now re-define your entities
in a way that inheritance could be done, to avoid redundancy.
:D.
I have a three step process, this is one that I have gone through successfully myself. Later I met an ex-teacher turned programmer (now very experienced) who explained to me exactly why this method worked so well, there's some psychology involved but it's essentially all about maintaining control and confidence as you learn. Here it is:
Learn what test driven development (TDD) is. You can comfortably do this with procedural code so you don't need to start working with objects yet if you don't want to. The second step depends on this.
Pick up a copy of Refactoring: Improving the Design of Existing Code by Martin Fowler. It's essentially a catalogue of little changes that you can make to existing code. You can't refactor properly without tests though. What this allows you to do is to mess with the code without worrying that everything will break. Tests and refactoring take away the paranoia and sense that you don't know what will happen, which is incredibly liberating. You left to basically play around. As you get more confident with that start exploring mocks for testing the interactions between objects.
Now comes the big that most people, mistakenly start with, it's good stuff but it should really come third. At this point you can should reading about design patterns, code smells (that's a good one to Google) and object oriented design principles. Also learn about user stories or use cases as these give you good initial candidate classes when writing new applications, which is a good solution to the "where do I start?" problem when writing apps.
And that's it! Proven goodness! Let me know how it goes.
My eureka moment for understanding object-oriented design was when I read Eric Evans' book "Domain-Driven Design: Tackling Complexity in the Heart of Software". Or the "Domain Driven Design Quickly" mini-book (which is available online as a free PDF) if you are cheap or impatient. :)
Any time you have a "Manager" class or any static singleton instances, you are probably building a procedural design.