What is Helper Class in dart? - oop

I started learning the dart language. when I heard the term Helper Class. I didn't get any clear answer.
Please tell me about
What is the meaning of the Helper Class?
For which purpose they are used
Thank you so much to the kind community. :)

In simple words Helper class is like a warehouse where you can put commonly used operations for other classes. So whenever other classes will need them they can access them.
Imagine you have some code which is commonly used in your app. So there are two ways to use that code.
To write the same code again and again. (Which no one wants and prefers)
To put that code somewhere and call it whenever you need it. And this is a situation where helper class come in to play.
Below are some main objectives behind its creation:
A helper class is created to make code more readable and clearly organizable.
They help to eliminate boilerplate code as they contain commonly used functionalities.
The other goal behind its creation is to provide a common functionality to other classes. In helper class, you can move some methods, variables, and operations, which are commonly used in other classes. So it helps to make your code more organized, maintainable and readable to others.
I hope it helps you. :)

Related

Sharing code between Objective-C classes, like Traits in PHP

How can I share code between classes in Objective-C, the way Traits in PHP work?
I thought of using categories, but I wondered if there is something more suitable when it wouldn't be sensible to use inheritance.
There are several ways to share code between classes and each one has its own importance, depending upon the situation:
You can use inheritance.
You can declare Global Methods.
You can put the sharable code in AppDelegate.
You can use Singleton Class and put the common code in that class. (Not preferred for sharing code but we can still do it.)
All methods have their own pros/cons. You need to study their applications and use. Hope it helps.
Depends. You should ask yourself why do you want to have the same behaviour in various classes. You can use: Inheritance or design patterns (e.g. Composite pattern).
See:
Does Objective-C support traits/mixins?
Not sure if this is the best practice, or what you mean by "sharing code" but I usually have a static class which can hold global values.
The class is static and you can access it from anywhere like this:
[dataModel getMyValue];
[dataModel setMyValue];
It only becomes an issues if you try to write to it from multiple threads, but other than that its a good way to store shared data in your app.
Sharing code in Objective-C can be done only via subclassing or doing composition.
There is no equivalent of PHP's traits here. Categories work in a little bit different way. They're are assigned to a certain class, so you can't use code from category in any class. Unless you create NSObject category, which is good idea only in rare cases. You can treat category as a class extension.
It's possible 'share' interfaces having many different protocols. But it's not exactly what you need, I guess.

When should I extract blocks of code to private methods

When I'm writing a method I try to extract code blocks within that method out to private methods.
For example, should I need to transform one of the input parameters, I create a private method that accepts the parameter value and returns the transformed value. I call this private method from the body of the 'main' method - in essence I try to encapsulate whatever the transform operation is within the private method and name the method appropriately.
I'm really looking for answers on whether folks think this general approach is a good idea. I've had mixed feedback from other devs some of whom favor keeping all the code within the one method. I argue that small private methods encapsulate these single tasks, they argue that the class is kept cleaner if the code in kept in the one method.
It would be great to get some answers from the community on which approach you feel reflects better design or is more in line with OOP principles.
I generally do the same for many reasons:
It helps reuse.
It makes the methods have a single responsibility. This in turn makes them easy to communicate their purpose. I think that the SRP not only applies to classes but also to methods.
It makes methods easy to read and understand. My methods generally don't have more than 6 or 7 lines.
It makes it easy to later refactor them (e.g. in case you need to decouple some behavior into another object, which is very common as a system evolves).
I use, as a general rule of thumb, that having to put comments in your method body to explain what is going on is a smell and means that it can be refactored into smaller pieces.
HTH
In brief it's generally a good idea.
For more info, take a look at Neal Ford's Composed Method article from DeveloperWorks. In this article Neal illustrates how to refactor to private methods and thus isolate areas of code suitable for reuse.
The really important benefit of this exercise is the ability to
harvest reusable code. When you look at the code in Listing 1, you
don't see reusable assets; you just see a pile of code. By pulling the
olio method apart, I discover reusable assets. But the advantages go
beyond reuse. I've also created the foundation for a simple framework
to handle persistence in my application. When it comes time to create
another simple boundary class to harvest some entity from a database,
I already have code to help me do that. This is the essence of
extracting frameworks rather than building them in an ivory tower.
Well in general you should put into methods code that you need at more places (in order to do not repeat yourself).
It could also make sense to put code into other methods if a method would be very long, then it could make sense to split it up into a number of methods.

Should I be using classes for something simple like solving math problems?

This is a question about using an object-oriented language. I've been using C++ to solve Project Euler for a while, and I recently read in an article that a lot of people treat C++ like a procedural language, since you can get away without creating classes. I've been doing exactly that.
My question is whether it's "bad" to just be writing functions in an object-oriented languageint mult_order(int base, int mod) for multiplicative order, gcd(int a, int b) for gcd, but without putting them in a class). I've been "reinventing the wheel" a lot for the purpose of learning--should I put them in a library, or create a Math class or something along those lines?
From what I've been taught (and what I've experienced), the underlying idea behind OOP is a simple one:
Use it when it makes your life easier.
It could easily be the case that, for your purpose, using a class wouldn't make things easier - you don't have a reason to repeatedly access a single object that performs these mathematical operations - or creating a class would create unnecessary overhead.
For your example, I think you'll be fine without objects, but do consider that somewhere in the future, it may be necessary to create an object that can handle those operations.
It seems you need to be using a namespace instead of a class.
There's nothing wrong with having functions that don't belong to a class, but you should still group them together.
Use a class when you need properties for an object, or inheritance, or state, not just so you can group functions together.
The main benefit using classes is going to give you is reuse through inheritance. So if you find you have situations where you have some common code, and then other sections of code that are variations on that, then making classes would help you. If not, then you are probably OK the way you are. Not every problem has to be solved with object oriented programming.

When do you need to create abstractions in the form of interfaces?

When do you encourage programming against an interface and not directly to a concrete class?
A guideline that I follow is to create abstractions whenever code requires to cross a logical/physical boundary, most especially when infrastructure-related concerns are involved.
Another checkpoint would be if a dependency will likely change in the future, due to possible additional concerns code (such as caching, transactional awareness, invoking a webservice instead of in-process execution) or if such dependencies have direct references to infrastructure integration points.
If code depends on something that does not require control to cross a logical/physical boundary, I more or less don't create abstractions to interact with those.
Am I missing anything?
Also, use interfaces when
Multiple objects will need to be acted upon in a particular fashion, but are not fundamentally related. Perhaps many of your business objects access a particular utility object, and when they do they need to give a reference of themselves to that utility object so the utility object can call a particular method. Have that method in an interface and pass that interface to that utility object.
Passing around interfaces as parameters can be very helpful in unit testing. Even if you have just one type of object that sports a particular interface, and hence don't really need a defined interface, you might define/implement an interface solely to "fake" that object in unit tests.
related to the first 2 bullets, check out the Observer pattern and the Dependency Injection. I'm not saying to implement these patterns, but they illustrate types of places where interfaces are really helpful.
Another twist on this is for implementing a couple of the SOLID Principals, Open Closed principal and the Interface Segregation principle. Like the previous bullet, don't get stressed about strictly implementing these principals everywhere (right away at least), but use these concepts to help move your thinking away from just what objects go where to thinking more about contracts and dependency
In the end, let's not make it too complicated: we're in a strongly typed world in .NET. If you need to call a method or set a property but the object you're passing/using could be fundamentally different, use an interface.
I would add that if your code is not going to be referenced by another library (for a while at least), then the decision of whether to use an interface in a particular situation is one that you can responsibly put off. The "extract interface" refactoring is easy to do these days. In my current project, I've got an object being passed around that I'm thinking maybe I should switch to an interface; I'm not stressing about it.
Interfaces abstraction are convenient when doing unit test. It helps for mocking test objects. It very useful in TDD for developing without actually using data from your database.
If you don't need any features of the class that aren't found in the Interface...then why not always prefer the Interface implementation?
It will make your code easier to modify in the future and easier to test (mocking).
you have the right idea, already. i would only add a couple of notes to this...
first, abstraction does not mean 'interface'. for example, a "connection string" is an abstraction, even though it's just a string... it's not about the 'type' of the thing in question, it's about the intention of use for that thing.
and secondly, if you are doing test automation of any kind, look for the pain and friction that are exposed by writing the tests. if you find yourself having to set up too many external conditions for a test, it's a sign that you need a better abstraction between the thing your testing and the things it interacts with.
I think you've said it pretty well. Much of this will be a stylistic thing. There are open source projects I've looked at where everything has an interface and an implementation, and it's kind of frustrating, but it might make iterative development a little easier, since any objects implementation can break but dummies will still work. But honestly, I can dummy any class that doesn't overuse the final keyword by inheritance.
I would add to your list this: anything which can be thought of as a black box should be abstracted. This includes some of the things you've mentioned, but it also includes hairy algorithms, which are likely to have multiple useful implementations with different advantages for different situation.
Additionally, interfaces come in handy very often with composite objects. That's the only way something like java's swing library gets anything done, but it can also be useful for more mundane objects. (I personally like having an interface like ValidityChecker with ways to and-compose or or-compose subordinate ValidityCheckers.)
Most of the useful things that come with the Interface passing have been already said. However I would add:
implementing an interface to an object, or later multiple objects, FORCES all the implementers to follow an IDENTICAL pattern to implement contract with the object. This can be useful in case you have not so OOP-experienced-programmers actually writing the implementation code.
in some languages you can add attributes on the interface itself, which can be different from the actual object implementation attribute as sense and intent

Why should you prevent a class from being subclassed?

What can be reasons to prevent a class from being inherited? (e.g. using sealed on a c# class)
Right now I can't think of any.
Because writing classes to be substitutably extended is damn hard and requires you to make accurate predictions of how future users will want to extend what you've written.
Sealing your class forces them to use composition, which is much more robust.
How about if you are not sure about the interface yet and don't want any other code depending on the present interface? [That's off the top of my head, but I'd be interested in other reasons as well!]
Edit:
A bit of googling gave the following:
http://codebetter.com/blogs/patricksmacchia/archive/2008/01/05/rambling-on-the-sealed-keyword.aspx
Quoting:
There are three reasons why a sealed class is better than an unsealed class:
Versioning: When a class is originally sealed, it can change to unsealed in the future without breaking compatibility. (…)
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
Security and Predictability: A class must protect its own state and not allow itself to ever become corrupted. When a class is unsealed, a derived class can access and manipulate the base class’s state if any data fields or methods that internally manipulate fields are accessible and not private.(…)
I want to give you this message from "Code Complete":
Inheritance - subclasses - tends to
work against the primary technical
imperative you have as a programmer,
which is to manage complexity.For the sake of controlling complexity, you should maintain a heavy bias against inheritance.
The only legitimate use of inheritance is to define a particular case of a base class like, for example, when inherit from Shape to derive Circle. To check this look at the relation in opposite direction: is a Shape a generalization of Circle? If the answer is yes then it is ok to use inheritance.
So if you have a class for which there can not be any particular cases that specialize its behavior it should be sealed.
Also due to LSP (Liskov Substitution Principle) one can use derived class where base class is expected and this is actually imposes the greatest impact from use of inheritance: code using base class may be given an inherited class and it still has to work as expected. In order to protect external code when there is no obvious need for subclasses you seal the class and its clients can rely that its behavior will not be changed. Otherwise external code needs to be explicitly designed to expect possible changes in behavior in subclasses.
A more concrete example would be Singleton pattern. You need to seal singleton to ensure one can not break the "singletonness".
This may not apply to your code, but a lot of classes within the .NET framework are sealed purposely so that no one tries to create a sub-class.
There are certain situations where the internals are complex and require certain things to be controlled very specifically so the designer decided no one should inherit the class so that no one accidentally breaks functionality by using something in the wrong way.
#jjnguy
Another user may want to re-use your code by sub-classing your class. I don't see a reason to stop this.
If they want to use the functionality of my class they can achieve that with containment, and they will have much less brittle code as a result.
Composition seems to be often overlooked; all too often people want to jump on the inheritance bandwagon. They should not! Substitutability is difficult. Default to composition; you'll thank me in the long run.
I am in agreement with jjnguy... I think the reasons to seal a class are few and far between. Quite the contrary, I have been in the situation more than once where I want to extend a class, but couldn't because it was sealed.
As a perfect example, I was recently creating a small package (Java, not C#, but same principles) to wrap functionality around the memcached tool. I wanted an interface so in tests I could mock away the memcached client API I was using, and also so we could switch clients if the need arose (there are 2 clients listed on the memcached homepage). Additionally, I wanted to have the opportunity to replace the functionality altogether if the need or desire arose (such as if the memcached servers are down for some reason, we could potentially hot swap with a local cache implementation instead).
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
That said, I think there are potential times when you might want to make a class sealed... and the best thing I can think of is an API that you will invoke directly, but allow clients to implement. For example, a game where you can program against the game... if your classes were not sealed, then the players who are adding features could potentially exploit the API to their advantage. This is a very narrow case though, and I think any time you have full control over the codebase, there really is little if any reason to make a class sealed.
This is one reason I really like the Ruby programming language... even the core classes are open, not just to extend but to ADD AND CHANGE functionality dynamically, TO THE CLASS ITSELF! It's called monkeypatching and can be a nightmare if abused, but it's damn fun to play with!
From an object-oriented perspective, sealing a class clearly documents the author's intent without the need for comments. When I seal a class I am trying to say that this class was designed to encapsulate some specific piece of knowledge or some specific service. It was not meant to be enhanced or subclassed further.
This goes well with the Template Method design pattern. I have an interface that says "I perform this service." I then have a class that implements that interface. But, what if performing that service relies on context that the base class doesn't know about (and shouldn't know about)? What happens is that the base class provides virtual methods, which are either protected or private, and these virtual methods are the hooks for subclasses to provide the piece of information or action that the base class does not know and cannot know. Meanwhile, the base class can contain code that is common for all the child classes. These subclasses would be sealed because they are meant to accomplish that one and only one concrete implementation of the service.
Can you make the argument that these subclasses should be further subclassed to enhance them? I would say no because if that subclass couldn't get the job done in the first place then it should never have derived from the base class. If you don't like it then you have the original interface, go write your own implementation class.
Sealing these subclasses also discourages deep levels of inheritence, which works well for GUI frameworks but works poorly for business logic layers.
Because you always want to be handed a reference to the class and not to a derived one for various reasons:
i. invariants that you have in some other part of your code
ii. security
etc
Also, because it's a safe bet with regards to backward compatibility - you'll never be able to close that class for inheritance if it's release unsealed.
Or maybe you didn't have enough time to test the interface that the class exposes to be sure that you can allow others to inherit from it.
Or maybe there's no point (that you see now) in having a subclass.
Or you don't want bug reports when people try to subclass and don't manage to get all the nitty-gritty details - cut support costs.
Sometimes your class interface just isn't meant to be inheirited. The public interface just isn't virtual and while someone could override the functionality that's in place it would just be wrong. Yes in general they shouldn't override the public interface, but you can insure that they don't by making the class non-inheritable.
The example I can think of right now are customized contained classes with deep clones in .Net. If you inherit from them you lose the deep clone ability.[I'm kind of fuzzy on this example, it's been a while since I worked with IClonable] If you have a true singelton class, you probably don't want inherited forms of it around, and a data persistence layer is not normally place you want a lot of inheritance.
Not everything that's important in a class is asserted easily in code. There can be semantics and relationships present that are easily broken by inheriting and overriding methods. Overriding one method at a time is an easy way to do this. You design a class/object as a single meaningful entity and then someone comes along and thinks if a method or two were 'better' it would do no harm. That may or may not be true. Maybe you can correctly separate all methods between private and not private or virtual and not virtual but that still may not be enough. Demanding inheritance of all classes also puts a huge additional burden on the original developer to foresee all the ways an inheriting class could screw things up.
I don't know of a perfect solution. I'm sympathetic to preventing inheritance but that's also a problem because it hinders unit testing.
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
Well, there is a reason: your code is now somewhat insulated from changes to the memcached interface.
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
That's a great reason indeed. Thus, for performance-critical classes, sealed and friends make sense.
All the other reasons I've seen mentioned so far boil down to "nobody touches my class!". If you're worried someone might misunderstand its internals, you did a poor job documenting it. You can't possibly know that there's nothing useful to add to your class, or that you already know every imaginable use case for it. Even if you're right and the other developer shouldn't have used your class to solve their problem, using a keyword isn't a great way of preventing such a mistake. Documentation is. If they ignore the documentation, their loss.
Most of answers (when abstracted) state that sealed/finalized classes are tool to protect other programmers against potential mistakes. There is a blurry line between meaningful protection and pointless restriction. But as long as programmer is the one who is expected to understand the program, I see no hardly any reasons to restrict him from reusing parts of a class. Most of you talk about classes. But it's all about objects!
In his first post, DrPizza claims that designing inheritable class means anticipating possible extensions. Do I get it right that you think that class should be inheritable only if it's likely to be extended well? Looks as if you were used to design software from the most abstract classes. Allow me a brief explanation of how do I think when designing:
Starting from the very concrete objects, I find characteristics and [thus] functionality that they have in common and I abstract it to superclass of those particular objects. This is a way to reduce code duplicity.
Unless developing some specific product such as a framework, I should care about my code, not others (virtual) code. The fact that others might find it useful to reuse my code is a nice bonus, not my primary goal. If they decide to do so, it's their responsibility to ensure validity of extensions. This applies team-wide. Up-front design is crucial to productivity.
Getting back to my idea: Your objects should primarily serve your purposes, not some possible shoulda/woulda/coulda functionality of their subtypes. Your goal is to solve given problem. Object oriented languages uses fact that many problems (or more likely their subproblems) are similar and therefore existing code can be used to accelerate further development.
Sealing a class forces people who could possibly take advantage of existing code WITHOUT ACTUALLY MODIFYING YOUR PRODUCT to reinvent the wheel. (This is a crucial idea of my thesis: Inheriting a class doesn't modify it! Which seems quite pedestrian and obvious, but it's being commonly ignored).
People are often scared that their "open" classes will be twisted to something that can not substitute its ascendants. So what? Why should you care? No tool can prevent bad programmer from creating bad software!
I'm not trying to denote inheritable classes as the ultimately correct way of designing, consider this more like an explanation of my inclination to inheritable classes. That's the beauty of programming - virtually infinite set of correct solutions, each with its own cons and pros. Your comments and arguments are welcome.
And finally, my answer to the original question: I'd finalize a class to let others know that I consider the class a leaf of the hierarchical class tree and I see absolutely no possibility that it could become a parent node. (And if anyone thinks that it actually could, then either I was wrong or they don't get me).