Generate PDF with rectangles - pdf

What's the easiest way to generate a PDF file with simple filled rectangles on arbitrary locations on the page, given by coordinates?
Example: For a given pair of coordinates like 100 50 105 80 I would like to get an A4 PDF with a filled rectangle 5mm wide and 30mm high.
Simple coordinate transformations are no problem to make via script, but what's the best technology to use? I already thought about generating a latex source file with \rule, but it seams quite heavyweight when thinking about build automation with docker images.

I figured out one easy way to accomplish this with python, using FPDF's rect method:
from fpdf import FPDF
# Prepare PDF generator
pdf = FPDF(orientation = 'L', unit = 'mm', format = 'A4')
pdf.add_page()
pdf.set_fill_color(0, 0, 0)
# Draw the rectangle
pdf.rect(x = 100, y = 50, w = 5, h = 30, style = 'F')
# Write to file
pdf.output(filename)

Related

Making plot with subfigure created elsewhere (matplotlib)

I have a function "makeGrid(tensor)" that takes as an argument a pytorch tensor of shape (B,3,H,W), and uses ImageGrid to make a figure that displays the batch of figures in a grid.
Now, the model that outputs "tensor", depends on one parameter, "alpha". I would like to include a slider on the figure such that I can modify alpha "live". I am using the "Slider" widget from matplotlib roughly as such :
result = model(tensor)
images,grid = makeGrid(result)
ifig = plt.figure()# Figure with slider
axalpha = ifig.add_axes([0.25, 0.1, 0.65, 0.03])
# How to add the "images" to ifig ???
alpha_slider = Slider(
ax=axsmol,
valmin=-2,
valmax=2,
valinit=1,
)
def update(val):
model.alpha = alpha_slider.val
result= model(img_batch)
images,grid = makeGrid(result)
# Same problem, need to update ifig with new images
alpha_slider.on_changed(update)
plt.show()
So, my main problem is I have no idea how to use the already created figure (images) and/or grid (which is an ImageGrid object, roughly a list of axes afaik) as a subplot of "ifig", the interactive figure which contains slider and images.
Very sorry as this seems to be a basic question, but searching for "how to add already created figure as subplot of figure" or other things didn't yield solutions to my problem (or at least, in my limited point of view).

Scaling textplot_wordcloud quanteda

I want to plot features from my quanteda dfm.
When I use the textplot_wordcloud (see code) I get the error:
In wordcloud(x, min_size, max_size, min_count, max_words, ... : Term x could not be fit on page. It will not be plotted.
dfm_joint <- dfm(tokens_skip)
textplot_wordcloud(dfm_joint, min_size = 2, rotation = 0.25, max_words = 100,
color = rev(RColorBrewer::brewer.pal(10, "RdBu")))
I guess it lies within the scaling of the plot but is there any possibility to adjust the plot size within the textplot_wordcloud function? Because the argument "adjust" delivered with the function is just for adapting the size of the words which doesn´t fix the problem.
Thanks very much in advance.

How to get chosen class images from Imagenet?

Background
I have been playing around with Deep Dream and Inceptionism, using the Caffe framework to visualize layers of GoogLeNet, an architecture built for the Imagenet project, a large visual database designed for use in visual object recognition.
You can find Imagenet here: Imagenet 1000 Classes.
To probe into the architecture and generate 'dreams', I am using three notebooks:
https://github.com/google/deepdream/blob/master/dream.ipynb
https://github.com/kylemcdonald/deepdream/blob/master/dream.ipynb
https://github.com/auduno/deepdraw/blob/master/deepdraw.ipynb
The basic idea here is to extract some features from each channel in a specified layer from the model or a 'guide' image.
Then we input an image we wish to modify into the model and extract the features in the same layer specified (for each octave),
enhancing the best matching features, i.e., the largest dot product of the two feature vectors.
So far I've managed to modify input images and control dreams using the following approaches:
(a) applying layers as 'end' objectives for the input image optimization. (see Feature Visualization)
(b) using a second image to guide de optimization objective on the input image.
(c) visualize Googlenet model classes generated from noise.
However, the effect I want to achieve sits in-between these techniques, of which I haven't found any documentation, paper, or code.
Desired result (not part of the question to be answered)
To have one single class or unit belonging to a given 'end' layer (a) guide the optimization objective (b) and have this class visualized (c) on the input image:
An example where class = 'face' and input_image = 'clouds.jpg':
please note: the image above was generated using a model for face recognition, which was not trained on the Imagenet dataset. For demonstration purposes only.
Working code
Approach (a)
from cStringIO import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import matplotlib as plt
import caffe
model_name = 'GoogLeNet'
model_path = 'models/dream/bvlc_googlenet/' # substitute your path here
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('models/dream/bvlc_googlenet/tmp.prototxt', 'w').write(str(model))
net = caffe.Classifier('models/dream/bvlc_googlenet/tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB
def showarray(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def objective_L2(dst):
dst.diff[:] = dst.data
def make_step(net, step_size=1.5, end='inception_4c/output',
jitter=32, clip=True, objective=objective_L2):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
objective(dst) # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, iter_n=20, octave_n=4, octave_scale=1.4,
end='inception_4c/output', clip=True, **step_params):
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
make_step(net, end=end, clip=clip, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
showarray(vis)
print octave, i, end, vis.shape
clear_output(wait=True)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
I run the code above with:
end = 'inception_4c/output'
img = np.float32(PIL.Image.open('clouds.jpg'))
_=deepdream(net, img)
Approach (b)
"""
Use one single image to guide
the optimization process.
This affects the style of generated images
without using a different training set.
"""
def dream_control_by_image(optimization_objective, end):
# this image will shape input img
guide = np.float32(PIL.Image.open(optimization_objective))
showarray(guide)
h, w = guide.shape[:2]
src, dst = net.blobs['data'], net.blobs[end]
src.reshape(1,3,h,w)
src.data[0] = preprocess(net, guide)
net.forward(end=end)
guide_features = dst.data[0].copy()
def objective_guide(dst):
x = dst.data[0].copy()
y = guide_features
ch = x.shape[0]
x = x.reshape(ch,-1)
y = y.reshape(ch,-1)
A = x.T.dot(y) # compute the matrix of dot-products with guide features
dst.diff[0].reshape(ch,-1)[:] = y[:,A.argmax(1)] # select ones that match best
_=deepdream(net, img, end=end, objective=objective_guide)
and I run the code above with:
end = 'inception_4c/output'
# image to be modified
img = np.float32(PIL.Image.open('img/clouds.jpg'))
guide_image = 'img/guide.jpg'
dream_control_by_image(guide_image, end)
Question
Now the failed approach how I tried to access individual classes, hot encoding the matrix of classes and focusing on one (so far to no avail):
def objective_class(dst, class=50):
# according to imagenet classes
#50: 'American alligator, Alligator mississipiensis',
one_hot = np.zeros_like(dst.data)
one_hot.flat[class] = 1.
dst.diff[:] = one_hot.flat[class]
To make this clear: the question is not about the dream code, which is the interesting background and which is already working code, but it is about this last paragraph's question only: Could someone please guide me on how to get images of a chosen class (take class #50: 'American alligator, Alligator mississipiensis') from ImageNet (so that I can use them as input - together with the cloud image - to create a dream image)?
The question is how to get images of the chosen class #50: 'American alligator, Alligator mississipiensis' from ImageNet.
Go to image-net.org.
Go to "Download".
Follow the instructions for "Download Image URLs":
How to download the URLs of a synset from your Brower?
1. Type a query in the Search box and click "Search" button
The alligator is not shown. ImageNet is under maintenance. Only ILSVRC synsets are included in the search results. No problem, we are fine with the similar animal "alligator lizard", since this search is about getting to the right branch of the WordNet treemap. I do not know whether you will get the direct ImageNet images here even if there were no maintenance.
2. Open a synset papge
Scrolling down:
Scrolling down:
Searching for the American alligator, which happens to be a saurian diapsid reptile as well, as a near neighbour:
3. You will find the "Download URLs" button under the left-bottom corner of the image browsing window.
You will get all of the URLs with the chosen class. A text file pops up in the browser:
http://image-net.org/api/text/imagenet.synset.geturls?wnid=n01698640
We see here that it is just about knowing the right WordNet id that needs to be put at the end of the URL.
Manual image download
The text file looks as follows:
http://farm1.static.flickr.com/136/326907154_d975d0c944.jpg
http://weeksbay.org/photo_gallery/reptiles/American20Alligator.jpg
...
till image number 1261.
As an example, the first URL links to:
And the second is a dead link:
The third link is dead, but the fourth is working.
The images of these URLs are publicly available, but many links are dead, and the pictures are of lower resolution.
Automated image download
From the ImageNet guide again:
How to download by HTTP protocol? To download a synset by HTTP
request, you need to obtain the "WordNet ID" (wnid) of a synset first.
When you use the explorer to browse a synset, you can find the WordNet
ID below the image window.(Click Here and search "Synset WordNet ID"
to find out the wnid of "Dog, domestic dog, Canis familiaris" synset).
To learn more about the "WordNet ID", please refer to
Mapping between ImageNet and WordNet
Given the wnid of a synset, the URLs of its images can be obtained at
http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=[wnid]
You can also get the hyponym synsets given wnid, please refer to API
documentation to learn more.
So what is in that API documentation?
There is everything needed to get all of the WordNet IDs (so called "synset IDs") and their words for all synsets, that is, it has any class name and its WordNet ID at hand, for free.
Obtain the words of a synset
Given the wnid of a synset, the words of
the synset can be obtained at
http://www.image-net.org/api/text/wordnet.synset.getwords?wnid=[wnid]
You can also Click Here to
download the mapping between WordNet ID and words for all synsets,
Click Here to download the
mapping between WordNet ID and glosses for all synsets.
If you know the WordNet ids of choice and their class names, you can use the nltk.corpus.wordnet of "nltk" (natural language toolkit), see the WordNet interface.
In our case, we just need the images of class #50: 'American alligator, Alligator mississipiensis', we already know what we need, thus we can leave the nltk.corpus.wordnet aside (see tutorials or Stack Exchange questions for more). We can automate the download of all alligator images by looping through the URLs that are still alive. We could also widen this to the full WordNet with a loop over all WordNet IDs, of course, though this would take far too much time for the whole treemap - and is also not recommended since the images will stop being there if 1000s of people download them daily.
I am afraid I will not take the time to write this Python code that accepts the ImageNet class number "#50" as the argument, though that should be possible as well, using mapping tables from WordNet to ImageNet. Class name and WordNet ID should be enough.
For a single WordNet ID, the code could be as follows:
import urllib.request
import csv
wnid = "n01698640"
url = "http://image-net.org/api/text/imagenet.synset.geturls?wnid=" + str(wnid)
# From https://stackoverflow.com/a/45358832/6064933
req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'})
with open(wnid + ".csv", "wb") as f:
with urllib.request.urlopen(req) as r:
f.write(r.read())
with open(wnid + ".csv", "r") as f:
counter = 1
for line in f.readlines():
print(line.strip("\n"))
failed = []
try:
with urllib.request.urlopen(line) as r2:
with open(f'''{wnid}_{counter:05}.jpg''', "wb") as f2:
f2.write(r2.read())
except:
failed.append(f'''{counter:05}, {line}'''.strip("\n"))
counter += 1
if counter == 10:
break
with open(wnid + "_failed.csv", "w", newline="") as f3:
writer = csv.writer(f3)
writer.writerow(failed)
Result:
If you need the images even behind the dead links and in original quality, and if your project is non-commercial, you can sign in, see "How do I get a copy of the images?" at the Download FAQ.
In the URL above, you see the wnid=n01698640 at the end of the URL which is the WordNet id that is mapped to ImageNet.
Or in the "Images of the Synset" tab, just click on "Wordnet IDs".
To get to:
or right-click -- save as:
You can use the WordNet id to get the original images.
If you are commercial, I would say contact the ImageNet team.
Add-on
Taking up the idea of a comment: If you do not want many images, but just the "one single class image" that represents the class as much as possible, have a look at Visualizing GoogLeNet Classes and try to use this method with the images of ImageNet instead. Which is using the deepdream code as well.
Visualizing GoogLeNet Classes
July 2015
Ever wondered what a deep neural network thinks a Dalmatian should
look like? Well, wonder no more.
Recently Google published a post describing how they managed to use
deep neural networks to generate class visualizations and modify
images through the so called “inceptionism” method. They later
published the code to modify images via the inceptionism method
yourself, however, they didn’t publish code to generate the class
visualizations they show in the same post.
While I never figured out exactly how Google generated their class
visualizations, after butchering the deepdream code and this ipython
notebook from Kyle McDonald, I managed to coach GoogLeNet into drawing
these:
... [with many other example images to follow]

Tensorboard histograms to matplotlib

I would like to "dump" the tensorboard histograms and plot them via matplotlib. I would have more scientific paper appealing plots.
I managed to hack the way through the Summary file using the tf.train.summary_iterator and dump the histogram that I wanted to dump( tensorflow.core.framework.summary_pb2.HistogramProto object).
By doing that and implementing what the java-script code does with the data (https://github.com/tensorflow/tensorboard/blob/c2fe054231fe77f3a5b05dbc519f713d2e738d1c/tensorboard/plugins/histogram/tf_histogram_dashboard/histogramCore.ts#L104), I managed to get something similar (same trends) with the tensorboard plots, but not the exact same plot.
Can I have some light on this?
Thanks
In order to plot a tensorboard histogram with matplotlib I am doing the following:
event_acc = EventAccumulator(path, size_guidance={
'histograms': STEP_COUNT,
})
event_acc.Reload()
tags = event_acc.Tags()
result = {}
for hist in tags['histograms']:
histograms = event_acc.Histograms(hist)
result[hist] = np.array([np.repeat(np.array(h.histogram_value.bucket_limit), np.array(h.histogram_value.bucket).astype(np.int)) for h in histograms])
return result
h.histogram_value.bucket_limit gives me the value and h.histogram_value.bucket the count of this value. So when i repeat the values accordingly (np.repeat(...)), I get a huge array of expected size. This array can now be plotted with the default matplotlib logic.
The best solution is loading all events and reconstructing all the histogram (as the answer of #khuesmann) but not using EventAccumulator but EventFileLoader. This will give you a histogram per wall time and step as the ones Tensorboard plots. It can be extended to return a list of actions by timestep and wall time.
Don't forget to check which tag will you use.
from tensorboard.backend.event_processing.event_file_loader import EventFileLoader
# Just in case, PATH_OF_FILE is the path of the file, not the folder
loader = EventFileLoader(PATH_Of_FILE)
# Where to store values
wtimes,steps,actions = [],[],[]
for event in loader.Load():
wtime = event.wall_time
step = event.step
if len(event.summary.value) > 0:
summary = event.summary.value[0]
if summary.tag == HISTOGRAM_TAG:
wtimes += [wtime]*int(summary.histo.num)
steps += [step] *int(summary.histo.num)
for num,val in zip(summary.histo.bucket,summary.histo.bucket_limit):
actions += [val] *int(num)
bear in mind that tensorflow approximates the actions and treats the actions as continuous variables, so even if you have discrete actions (e.g. 0,1,3) you will end up actions as 0.2,0.4,0.9,1.4 ... in that case round the values will do it.
A good solution is the one from #khuesmann, but this only allows you to retrieve the accumulated histogram, not the histogram per step -- which is the one actually being showed in tensorboard.
If you want the distribution and so far, what I have understood is that Tensorboard usually compresses the histogram to decrease the memory used to store the data -- imagine storing a 2D histogram over 4 million steps, the memory can increase fast quickly. These compress histograms are accessible by doing this:
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
n2n = EventAccumulator(PATH)
n2n.Reload()
# Check the tags under histograms and choose the one you want
n2n.Tags()
# This will give you the list used by tensorboard
# of the compress histograms by timestep and wall time
n2n.CompressedHistograms(HISTOGRAM_TAG)
The only problem is that it compresses the histogram to five percentiles (in Basic points they are 0, 668, 1587, 3085, 5000, 6915, 8413, 9332, 10000) which corresponds to (-Inf, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, Inf) in standard deviations. Check the code here.
I haven't read much, but it wouldn't be hard to reconstruct the temporal histograms that tensorboard shows. If I find a way to do it, I will post it here.
The simplest way is to parse the events with tbparse and plot the histograms with seaborn kde_ridgeplot.
This tutorial generates the stacked distribution plot with around 30 lines of Python code:
Tensorboard preview:
Parse by tbparse & plotted by seaborn:
You can open an issue if you encountered any question during parsing. (I'm the author of tbparse)

Aliasing when saving matplotlib filled contour plot to .pdf or .eps

I'm generating a filed contour plot with the matplotlib.pyplot.contourf() function. The arguments in the call to the function are:
contourf(xvec,xvec,w,levels,cmap=matplotlib.cm.jet)
where
xvec = numpy.linspace(-3.,3.,50)
levels = numpy.linspace(-0.01,0.25,100)
and w is my data.
The resulting plot looks pretty good on screen, but when I save to pdf using a call to matplotlib.pyplot.savefig(), the resulting pdf has a lot of aliasing (I think that is what it is) going on. The call to savefig is simply savefig('filename.pdf'). I have tried using the dpi argument, but without luck. A call to matplotlib.get_backend() spits out 'TkAgg'.
I will attach a figure saved as pdf, compared to a figure saved as png (similar to what it looks like on screen) to demonstrate the problem:
png wihtout aliasing: https://dl.dropbox.com/u/6042643/wigner_g0.17.png
pdf with aliasing: https://dl.dropbox.com/u/6042643/wigner_g0.17.pdf
Please let me know if there are any other details I could give to help you give an answer. I should mention that saving as .eps gives similar bad results as saving to pdf. But the pdf shows the problem even clearer. My goal is to end up with a production quality .eps that I can attach to a latex document to be published as a scientific paper. I would be happy with some kind of work around where I save in one format, then convert it, if I can find a way that gives satisfying results.
Best,
Arne
After using the useful answer by #pelson for a while, I finally found a proper solution to this long-standing problem (currently in Matplotlib 3), which does not require multiple calls to contour or rasterizing the figure.
I refer to my original answer here for a more extensive explanation and examples.
In summary, the solution consists of the following lines:
cnt = plt.contourf(x, y, z)
for c in cnt.collections:
c.set_edgecolor("face")
plt.savefig('test.pdf')
I had no idea that contouring in pdf was so bad. You're right, I think the contours are being anti-aliased by the PDF renderers outside of matplotlib. It is for this reason I think you need to be particularly careful which application you use to view the resulting PDF - the best behaviour I have seen is with GIMP, but I'm sure there are plenty of other viewers which perform well.
To fix this problem (when viewing the PDF with GIMP), I was able to "rasterize" the contours produced with matplotlib to avoid the ugly white line problem:
import matplotlib.pyplot as plt
import numpy as np
xs, ys = np.mgrid[0:30, 0:40]
data = (xs - 15) ** 2 + (ys - 20) ** 2 + (np.sin(ys) + 10) ** 2
cs = plt.contourf(xs, ys, data, 60, cmap='jet')
# Rasterize the contour collections
for c in cs.collections:
c.set_rasterized(True)
plt.savefig('test.pdf')
This produced a contour plot which did not exhibit the problems you've shown.
Another alternative, perhaps better, approach, would be to fool the anti-aliasing by putting coloured lines below the contourf.
import matplotlib.pyplot as plt
import numpy as np
xs, ys = np.mgrid[0:30, 0:40]
data = (xs - 15) ** 2 + (ys - 20) ** 2 + (np.sin(ys) + 10) ** 2
# contour the plot first to remove any AA artifacts
plt.contour(xs, ys, data, 60, cmap='jet', lw=0.1)
cs = plt.contourf(xs, ys, data, 60, cmap='jet')
plt.savefig('test.pdf')
I should note that I don't see these problems if I save the figure as a ".ps" rather than a ".pdf" - perhaps that is a third alternative.
Hope this helps you get the paper looking exactly how you want it.