Pandas - Find details from Groupby in series - pandas

I am new to Pandas and doing some analysis csv file. I have successfully read csv and shown all details. I have got two column as an object type. I have done groupy for those two columns and got all result. I need to find all endPoint from event-description series in new column. Below is the sample till Groupby operation, however I am stuck to find all kind of http endpoint. Currently endPoint is showing blank, however it may contains from http url
import pandas as pd
data = pd.read_csv('/Users/temp/Downloads/sample.csv’)
data.head()
grouped_df = data.groupby([ "event_type", "event_description"])
grouped_df.first()
Sample:
a = '{"endPoint":"https://link.json","responseCode":200}'
b = '{"endPoint":"","responseCode":200}'
c = 'app'
df = pd.DataFrame({'event_description':[a,b,c]})
print (df)
event_description
0 {"endPoint":"https://link.json","responseCode"...
1 {"endPoint":"","responseCode":200}
2 app

Use custom function with try and except, because some data are not valid json:
import json
def get_endPoint(x):
try:
return json.loads(x)['endPoint']
except Exception:
return np.nan
df['endPoint'] = df['event_description'].apply(get_endPoint)
print (df)
event_description endPoint
0 {"endPoint":"https://link.json","responseCode"... https://link.json
1 {"endPoint":"","responseCode":200}
2 app NaN

Related

assigning csv file to a variable name

I have a .csv file, i uses pandas to read the .csv file.
import pandas as pd
from pandas import read_csv
data=read_csv('input.csv')
print(data)
0 1 2 3 4 5
0 -3.288733e-08 2.905263e-08 2.297046e-08 2.052534e-08 3.767194e-08 4.822049e-08
1 2.345769e-07 9.462636e-08 4.331173e-08 3.137627e-08 4.680112e-08 6.067109e-08
2 -1.386798e-07 1.637338e-08 4.077676e-08 3.339685e-08 5.020153e-08 5.871679e-08
3 -4.234607e-08 3.555008e-08 2.563824e-08 2.320405e-08 4.008257e-08 3.901410e-08
4 3.899913e-08 5.368551e-08 3.713510e-08 2.367323e-08 3.172775e-08 4.799337e-08
My aim is to assign the file to a column name so that i can access the data in later time. For example by doing something like
new_data= df['filename']
filename
0 -3.288733e-08,2.905263e-08,2.297046e-08,2.052534e-08,3.767194e-08,4.822049e-08
1 2.345769e-07,9.462636e-08,4.331173e-08,3.137627e-08,4.680112e-08, 6.067109e-08
2 -1.386798e-07,1.637338e-08,4.077676e-08,3.339685e-08,5.020153e-08,5.871679e-08
3 -4.234607e-08,3.555008e-08,2.563824e-08,2.320405e-08,4.008257e-08,3.901410e-08
4 3.899913e-08,5.368551e-08,3.713510e-08,2.367323e-08,3.172775e-08,4.799337e-08
I don't really like it (and I still don't completely get the point), but you could just read in your data as 1 column (by using a 'wrong' seperator) and renaming the column.
import pandas as pd
filename = 'input.csv'
df = pd.read_csv(filename, sep=';')
df.columns = [filename]
If you then wish, you could add other files by doing the same thing (with a different name for df at first) and then concatenate that with df.
A more usefull approach IMHO would be to add the dataframe to a dictionary (or a list would be possible).
import pandas as pd
filename = 'input.csv'
df = pd.read_csv(filename)
data_dict = {filename: df}
# ... Add multiple files to data_dict by repeating steps above in a loop
You can then access your data later on by calling data_dict[filename] or data_dict['input.csv']

Read json files in pandas dataframe

I have large pandas dataframe (17 000 rows) with a filepath in each row associated with a specific json file. For each row I want to read the json file content and extract the content into a new dataframe.
The dataframe looks something like this:
0 /home/user/processed/config1.json
1 /home/user/processed/config2.json
2 /home/user/processed/config3.json
3 /home/user/processed/config4.json
4 /home/user/processed/config5.json
... ...
16995 /home/user/processed/config16995.json
16996 /home/user/processed/config16996.json
16997 /home/user/processed/config16997.json
16998 /home/user/processed/config16998.json
16999 /home/user/processed/config16999.json
What is the most efficient way to do this?
I believe a simple for-loop might be best suited here?
import json
json_content = []
for row in df:
with open(row) as file:
json_content.append(json.load(file))
result = pd.DataFrame(json_content)
Generally, I'd try with iterrows() function (as a first hit to improve efficiency).
Implementation could possibly look like that:
import json
import pandas as pd
json_content = []
for row in df.iterrows():
with open(row) as file:
json_content.append(json.load(file))
result = pd.Series(json_content)
Possible solution is the following:
# pip install pandas
import pandas as pd
#convert column with paths to list, where: : - all rows, 0 - first column
paths = df.iloc[:, 0].tolist()
all_dfs = []
for path in paths:
df = pd.read_json(path, encoding='utf-8')
all_dfs.append(df)
Each df in all_dfs can be accessed individually or in loop by index like all_dfs[0], all_dfs[1] and etc.
If you wish you can merge all_dfs into the single dataframe.
dfs = df.concat(all_dfs, axis=1)

Pandas - get count of each boolean field

I have other programs where I group and count fields. Now, I want to get a count of each boolean field. Is there a Pandas way to do that rather than me looping and writing my own code? Ideally, I would generated a new dataframe with the results (kind of like what I did here).
Easy Example CSV Data (data about poker hands generated):
Hand,Other1,Other2,IsFourOfAKind,IsThreeOfAKind,IsPair
1,'a','b',1,0,0
2,'c','d',0,1,0
3,'a','b',0,1,0
4,'x','y',0,0,1
5,'a','b',0,0,1
6,'a','b',0,0,1
7,'a','b',0,0,1
Program:
import pandas as pd
import warnings
filename = "./data/TestGroup2.csv"
# tell run time to ignore certain read_csv type errors (from pandas)
warnings.filterwarnings('ignore', message="^Columns.*")
count_cols = ['IsFourOfAKind','IsThreeOfAKind','IsPair ']
enter code here
#TODO - use the above to get counts of only these columns
df = pd.read_csv(filename)
print(df.head(10))
Desired Output - could just be a new dataframe
Column Count
IsFourOfAKind 1
IsThreeOfAKind 2
IsPair 3
Please try:
df.filter(like='Is').sum(0)
or did you need;
df1=df.filter(like='Is').agg('sum').reset_index().rename(columns={'index':'column', 0:'count'})

Pandas - Appending data from one Dataframe to

I have a Dataframe (called df) that has list of tickets worked for a given date. I have a script that runs each day where this df gets generated and I would like to have a new master dataframe (lets say df_master) that appends values form df to a new Dataframe. So anytime I view df_master I should be able to see all the tickets worked across multiple days. Also would like to have a new column in df_master that shows date when the row was inserted.
Given below is how df looks like:
1001
1002
1003
1004
I tried to perform concat but it threw an error
TypeError: first argument must be an iterable of pandas objects, you passed an object of type "Series"
Update
df_ticket = tickets['ticket']
df_master = df_ticket
df_master['Date'] = pd.Timestamp('now').normalize()
L = [df_master,tickets]
master_df = pd.concat(L)
master_df.to_csv('file.csv', mode='a', header=False, index=False)
I think you need pass sequence to concat, obviously list is used:
objs : a sequence or mapping of Series, DataFrame, or Panel objects
If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised
L = [s1,s2]
df = pd.concat(L)
And it seems you pass only Series, so raised error:
df = pd.concat(s)
For insert Date column is possible set pd.Timestamp('now').normalize(), for master df I suggest create one file and append each day DataFrame:
df_ticket = tickets[['ticket']]
df_ticket['Date'] = pd.Timestamp('now').normalize()
df_ticket.to_csv('file.csv', mode='a', header=False, index=False)
df_master = pd.read_csv('file.csv', header=None)

There are three problems(Load database, loop, and append series)

Unlike when I started, I found this problem to be a more difficult problem than I thought.
I want to refer to a particular column content from the SQLite database, make it into a Series, and then combine it into a single data frame.
I have tried like this but faild:
import pandas as pd
from pandas import Series, DataFrame
import sqlite3
con = sqlite3.connect("C:/Users/Kun/Documents/Dashin/data.db") #my sqldb
tmplist = ['A003060','A003070'] #db contains that table,I decided to call
#only two for practice.
for i in tmplist:
tmpSeries =pd.Series([])
listSeries = pd.read_sql("SELECT * FROM %s " %(i), con , index_col =
None)['Close'].head(5)
tmpSeries2 = tmpSeries.append(listSeries)
print(tmpSeries2)
that code result show only dummy thing like this:
0 7150.0
1 6770.0
2 7450.0
3 7240.0
4 6710.0
dtype: float64
0 14950.0
1 15500.0
2 15000.0
3 14800.0
4 14500.0
What I want to do is like this:
A003060 A003070
0 7150.0 14950.0
1 6770.0 15500.0
2 7450.0 15000.0
3 7240.0 14800.0
4 6710.0 14500.0
I had a similar question ahead and got a answer. But The last question is
using predefined variables. But I must use loop because I have to deal with a series of large databases. I have already tried another effort using dataframe.append, transpose(). But I failed.
I would appreciate some small hints. Thank you.
To append pandas series using for loop
I think you can create list, then append data and last use concat:
dfs = []
for i in tmplist:
tmpSeries =pd.Series([])
listSeries = pd.read_sql("SELECT * FROM %s " %(i) con,index_col = None)['Close'].head(5)
dfs.append(listSeries)
df = pd.concat(dfs, axis=1, keys=tmplist)
print(df)