Keras gives 'Not JSON Serializable' error when saving the model - tensorflow

I'm implementing a fully convolutional neural network for image segmentation by using unet defined here
https://github.com/zhixuhao
To give different weights to the pixels of different classes I defined an extra Lambda layer, as suggested here
Keras, binary segmentation, add weight to loss function
The problem is that Keras raises this error when saving the model
.....
self.model.save(filepath, overwrite=True)
.....
TypeError: ('Not JSON Serializable:', b'\n\x15clip_by_value/Minimum\x12\x07Minimum\x1a\x12conv2d_23/Identity\x1a\x17clip_by_value/Minimum/y*\x07\n\x01T\x12\x020\x01')
My network is defined in an external function
def weighted_binary_loss(X):
y_pred, y_true, weights = X
loss = binary_crossentropy(y_true, y_pred)
weights_mask = y_true*weights[0] + (1.-y_true)*weights[1]
loss = multiply([loss, weights_mask])
return loss
def identity_loss(y_true, y_pred):
return y_pred
def net()
.....
....
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
w_loss = Lambda(weighted_binary_loss, output_shape=input_size, name='loss_output')([conv10, inputs, weights])
model = Model(inputs = inputs, outputs = w_loss)
model.compile(optimizer = Adam(lr = 1e-5), loss = identity_loss, metrics = ['accuracy'])
that I call in my main function
...
model_checkpoint = ModelCheckpoint('temp_model.hdf5', monitor='loss',verbose=1, save_best_only=True)
model.fit_generator(imgs,steps_per_epoch=20,epochs=1,callbacks=[model_checkpoint])
When I erase the Lambda layer, the error desappears
...
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(inputs = inputs, outputs = conv10)
model.compile(optimizer = Adam(lr = 1e-5), loss = 'binary_crossentropy', metrics = ['accuracy'])
I'm using
Keras==2.2.4, tensorflow-gpu==2.0.0b1

It appears that you are computing the loss in the layer of a model. It is not a good practice to accomodate the loss function as a layer. You can compute your weighted loss using custom loss function.
So your code can be rewritten as follows:
def weighted_binary_loss(y_true, y_pred):
weights = [0.5, 0.6] # Define your weights here
loss = binary_crossentropy(y_true, y_pred)
weights_mask = y_true*weights[0] + (1.-y_true)*weights[1]
loss = multiply([loss, weights_mask])
return loss
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(inputs = inputs, outputs = conv10)
model.compile(optimizer = Adam(lr = 1e-5), loss = weighted_binary_loss, metrics = ['accuracy'])
If it is needed that weights is a dynamic property and you have to send it as a separate parameter in loss function, you can follow this question.

Related

" ValueError: Expecting KerasTensor which is from tf.keras.Input()". Error in prediction with dropout function

I am trying to predict uncertainty in a regression problem using Dropout during testing as per Yarin Gal's article. I created a class using Keras's backend function as provided by this stack overflow question's answer. The class takes a NN model as input and randomly drops neurons during testing to give a stochastic estimate rather than deterministic output for a time-series forecasting.
I create a simple encoder-decoder model as shown below for the forecasting with 0.1 dropout during training:
input_sequence = Input(shape=(lookback, train_x.shape[2]))
encoder = LSTM(128, return_sequences=False)(input_sequence)
r_vec = RepeatVector(forward_pred)(encoder)
decoder = LSTM(128, return_sequences=True, dropout=0.1)(r_vec) #maybe use dropout=0.1
output = TimeDistributed(Dense(train_y.shape[2], activation='linear'))(decoder)
# optimiser = optimizers.Adam(clipnorm=1)
enc_dec_model = Model(input_sequence, output)
enc_dec_model.compile(loss="mean_squared_error",
optimizer="adam",
metrics=['mean_squared_error'])
enc_dec_model.summary()
After that, I define and call the DropoutPrediction class.
# Define the class:
class KerasDropoutPrediction(object):
def __init__(self ,model):
self.f = K.function(
[model.layers[0].input,
K.learning_phase()],
[model.layers[-1].output])
def predict(self ,x, n_iter=10):
result = []
for _ in range(n_iter):
result.append(self.f([x , 1]))
result = np.array(result).reshape(n_iter ,x.shape[0] ,x.shape[1]).T
return result
# Call the object:
kdp = KerasDropoutPrediction(enc_dec_model)
y_pred_do = kdp.predict(x_test,n_iter=100)
y_pred_do_mean = y_pred_do.mean(axis=1)
However, in the line
kdp = KerasDropoutPrediction(enc_dec_model), when I call the LSTM model,
I got the following error message which says the input has to be a Keras Tensor. Can anyone help me with this error?
Error Message:
ValueError: Found unexpected instance while processing input tensors for keras functional model. Expecting KerasTensor which is from tf.keras.Input() or output from keras layer call(). Got: 0
To activate Dropout at inference time, you simply have to specify training=True (TF>2.0) in the layer of interest (in the last LSTM layer in your case)
with training=False
inp = Input(shape=(10, 1))
x = LSTM(1, dropout=0.3)(inp, training=False)
m = Model(inp,x)
# m.compile(...)
# m.fit(...)
X = np.random.uniform(0,1, (1,10,1))
output = []
for i in range(0,100):
output.append(m.predict(X)) # always the same
with training=True
inp = Input(shape=(10, 1))
x = LSTM(1, dropout=0.3)(inp, training=True)
m = Model(inp,x)
# m.compile(...)
# m.fit(...)
X = np.random.uniform(0,1, (1,10,1))
output = []
for i in range(0,100):
output.append(m.predict(X)) # always different
In your example, this becomes:
input_sequence = Input(shape=(lookback, train_x.shape[2]))
encoder = LSTM(128, return_sequences=False)(input_sequence)
r_vec = RepeatVector(forward_pred)(encoder)
decoder = LSTM(128, return_sequences=True, dropout=0.1)(r_vec, training=True)
output = TimeDistributed(Dense(train_y.shape[2], activation='linear'))(decoder)
enc_dec_model = Model(input_sequence, output)
enc_dec_model.compile(
loss="mean_squared_error",
optimizer="adam",
metrics=['mean_squared_error']
)
enc_dec_model.fit(train_x, train_y, epochs=10, batch_size=32)
and the KerasDropoutPrediction:
class KerasDropoutPrediction(object):
def __init__(self, model):
self.model = model
def predict(self, X, n_iter=10):
result = []
for _ in range(n_iter):
result.append(self.model.predict(X))
result = np.array(result)
return result
kdp = KerasDropoutPrediction(enc_dec_model)
y_pred_do = kdp.predict(test_x, n_iter=100)
y_pred_do_mean = y_pred_do.mean(axis=0)

Why some of the hidden units return zero in the GRU autoencoder?

I have implemented a recurrent neural network autoencoder as below:
def AE_GRU(X):
inputs = Input(shape=(X.shape[1], X.shape[2]), name="input")
L1 = GRU(8, activation="relu", return_sequences=True, kernel_regularizer=regularizers.l2(0.00), name="E1")(inputs)
L2 = GRU(4, activation="relu", return_sequences=False, name="E2")(L1)
L3 = RepeatVector(X.shape[1], name="RepeatVector")(L2)
L4 = GRU(4, activation="relu", return_sequences=True, name="D1")(L3)
L5 = GRU(8, activation="relu", return_sequences=True, name="D2")(L4)
output = TimeDistributed(Dense(X.shape[2]), name="output")(L5)
model = Model(inputs=inputs, outputs=[output])
return model
and after that I am running the below code to train the AE:
model = AE_GRU(trainX)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=optimizer, loss="mse")
model.summary()
epochs = 5
batch_size = 64
history = model.fit(
trainX, trainX,
epochs=epochs, batch_size=batch_size,
validation_data=(valX, valX)
).history
I have also attached the result of model.summary() below.
At the end I am extracting the second hidden layer outputs by running the below code.
def all_hidden_layers_output(iModel, dtset):
inp = iModel.input # input placeholder
outputs = [layer.output for layer in iModel.layers] # all layer outputs
functors = [K.function([inp], [out]) for out in outputs] # evaluation functions
layer_outs = [func([dtset]) for func in functors]
return layer_outs
hidden_state_train = all_hidden_layers_output(model, trainX)[2][0]
hidden_state_val = all_hidden_layers_output(model, valX)[2][0]
# remove zeros_columns:
hidden_state_train = hidden_state_train[:,~np.all(hidden_state_train==0.0, axis=0)]
hidden_state_val = hidden_state_val[:,~np.all(hidden_state_val==0.0, axis=0)]
print(f"hidden_state_train.shape={hidden_state_train.shape}")
print(f"hidden_state_val.shape={hidden_state_val.shape}")
But I don't know why some of the units in this layer return zero all the time. I expect to get hidden_state_train and hidden_state_val as 2D numpy array with 4 non-zeros columns (based on the model.summary() information). Any help would be greatly appreciated.
This may be because of the dying relu problem. The relu is 0 for negative values. Have a look at this (https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24) explanation of the problem.

How to freeze/unfreeze a pretrained Model as part of a subclassed Model in Tensorflow?

I am trying to build a subclassed Model which consists of a pretrained convolutional Base and some Dense Layers on top, using Tensorflow >= 2.4.
However freezing/unfreezing of the subclassed Model has no effect once it was trained before. When I do the same with the Functional API everything works as expected. I would really appreciate some Hint to what im missing here: Following Code should specify my problem further. Pardon me the amount of Code:
#Setup
import tensorflow as tf
tf.config.run_functions_eagerly(False)
import numpy as np
from tensorflow.keras.regularizers import l1
import matplotlib.pyplot as plt
#tf.function
def create_images_and_labels(img,label, height = 70, width = 70): #Image augmentation
label = tf.cast(label, 'float32')
label = tf.squeeze(label)
img = tf.image.convert_image_dtype(img, tf.float32)
img = tf.image.resize(img, (height, width))
# img = preprocess_input(img)
return img, label
cifar = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar.load_data()
num_classes = len(np.unique(y_train))
ds_train = tf.data.Dataset.from_tensor_slices((x_train, tf.one_hot(y_train, depth = len(np.unique(y_train)))))
ds_train = ds_train.map(lambda img, label: create_images_and_labels(img, label, height = 70, width = 70))
ds_train = ds_train.shuffle(50000)
ds_train = ds_train.batch(50, drop_remainder = True)
ds_val = tf.data.Dataset.from_tensor_slices((x_test, tf.one_hot(y_test, depth = len(np.unique(y_train)))))
ds_val = ds_val.map(lambda img, label: create_images_and_labels(img, label, height = 70, width = 70))
ds_val = ds_val.batch(50, drop_remainder=True)
# for i in ds_train.take(1):
# x, y = i
# for ind in range(x.shape[0]):
# plt.imshow(x[ind,:,:])
# plt.show()
# print(y[ind])
'''
Defining simple subclassed Model consisting of
VGG16
Flatten
Dense Layers
customized what happens in model.fit and model.evaluate (Actually its the standard Keras procedure with custom Metrics)
customized metrics: Loss and Accuracy for Training and Validation Step
added unfreezing Method
'set_trainable_layers'
Arguments:
num_head (How many dense Layers)
num_base (How many VGG Layers)
'''
class Test_Model(tf.keras.models.Model):
def __init__(
self,
num_unfrozen_head_layers,
num_unfrozen_base_layers,
num_classes,
conv_base = tf.keras.applications.VGG16(include_top = False, weights = 'imagenet', input_shape = (70,70,3)),
):
super(Test_Model, self).__init__(name = "Test_Model")
self.base = conv_base
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(2048, activation = 'relu')
self.dense2 = tf.keras.layers.Dense(1024, activation = 'relu')
self.dense3 = tf.keras.layers.Dense(128, activation = 'relu')
self.out = tf.keras.layers.Dense(num_classes, activation = 'softmax')
self.out._name = 'out'
self.train_loss_metric = tf.keras.metrics.Mean('Supervised Training Loss')
self.train_acc_metric = tf.keras.metrics.CategoricalAccuracy('Supervised Training Accuracy')
self.val_loss_metric = tf.keras.metrics.Mean('Supervised Validation Loss')
self.val_acc_metric = tf.keras.metrics.CategoricalAccuracy('Supervised Validation Accuracy')
self.loss_fn = tf.keras.losses.categorical_crossentropy
self.learning_rate = 1e-4
# self.build((None, 32,32,3))
self.set_trainable_layers(num_unfrozen_head_layers, num_unfrozen_base_layers)
#tf.function
def call(self, inputs, training = False):
x = self.base(inputs)
x = self.flatten(x)
x = self.dense1(x)
x = self.dense2(x)
x = self.dense3(x)
x = self.out(x)
return x
#tf.function
def train_step(self, input_data):
x_batch, y_batch = input_data
with tf.GradientTape() as tape:
tape.watch(x_batch)
y_pred = self(x_batch, training = True)
loss = self.loss_fn(y_batch, y_pred)
trainable_vars = self.trainable_weights
gradients = tape.gradient(loss, trainable_vars)
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
self.train_loss_metric.update_state(loss)
self.train_acc_metric.update_state(y_batch, y_pred)
return {"Supervised Loss": self.train_loss_metric.result(),
"Supervised Accuracy":self.train_acc_metric.result()}
#tf.function
def test_step(self, input_data):
x_batch,y_batch = input_data
y_pred = self(x_batch, training = False)
loss = self.loss_fn(y_batch, y_pred)
self.val_loss_metric.update_state(loss)
self.val_acc_metric.update_state(y_batch, y_pred)
return {"Val Supervised Loss": self.val_loss_metric.result(),
"Val Supervised Accuracy":self.val_acc_metric.result()}
#property
def metrics(self):
# We list our `Metric` objects here so that `reset_states()` can be
# called automatically at the start of each epoch
# or at the start of `evaluate()`.
# If you don't implement this property, you have to call
# `reset_states()` yourself at the time of your choosing.
return [self.train_loss_metric,
self.train_acc_metric,
self.val_loss_metric,
self.val_acc_metric]
def set_trainable_layers(self, num_head, num_base):
for layer in [lay for lay in self.layers if not isinstance(lay , tf.keras.models.Model)]:
layer.trainable = False
print(layer.name, layer.trainable)
for block in self.layers:
if isinstance(block, tf.keras.models.Model):
print('Found Submodel', block.name)
for layer in block.layers:
layer.trainable = False
print(layer.name, layer.trainable)
if num_base > 0:
for layer in block.layers[-num_base:]:
layer.trainable = True
print(layer.name, layer.trainable)
if num_head > 0:
for layer in [lay for lay in self.layers if not isinstance(lay, tf.keras.models.Model)][-num_head:]:
layer.trainable = True
print(layer.name, layer.trainable)
'''
Showcase1: First training completely frozen Model, then unfreezing:
unfreezed model doesnt learn
'''
model = Test_Model(num_unfrozen_head_layers= 0, num_unfrozen_base_layers = 0, num_classes = num_classes) # Should NOT learn -> doesnt learn
model.build((None, 70,70,3))
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.fit(ds_train, validation_data = ds_val)
model.set_trainable_layers(10,20) # SHOULD LEARN -> Doesnt learn
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.fit(ds_train, validation_data = ds_val)
#DOESNT LEARN
'''
Showcase2: when first training the Model with more trainable Layers than in the second step:
AssertionError occurs
'''
model = Test_Model(num_unfrozen_head_layers= 10, num_unfrozen_base_layers = 2, num_classes = num_classes) # SHOULD LEARN -> learns
model.build((None, 70,70,3))
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.fit(ds_train, validation_data = ds_val)
model.set_trainable_layers(1,1) # SHOULD NOT LEARN -> AssertionError
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.fit(ds_train, validation_data = ds_val)
'''
Showcase3: same Procedure as in Showcase2 but optimizer State is transferred to recompiled Model:
Cant set Weigthts because optimizer expects List of Length 0
'''
model = Test_Model(num_unfrozen_head_layers= 10, num_unfrozen_base_layers = 20, num_classes = num_classes) # SHOULD LEARN -> learns
model.build((None, 70,70,3))
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.fit(ds_train, validation_data = ds_val)
opti_state = model.optimizer.get_weights()
model.set_trainable_layers(0,0) # SHOULD NOT LEARN -> Learns
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(1e-5))
model.optimizer.set_weights(opti_state)
model.fit(ds_train, validation_data = ds_val)
#%%%
'''
Constructing same Architecture with Functional API and running Experiments
'''
import tensorflow as tf
conv_base = tf.keras.applications.VGG16(include_top = False, weights = 'imagenet', input_shape = (70,70,3))
inputs = tf.keras.layers.Input((70,70,3))
x = conv_base(inputs)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(2048, activation = 'relu') (x)
x = tf.keras.layers.Dense(1024,activation = 'relu') (x)
x = tf.keras.layers.Dense(128,activation = 'relu') (x)
out = tf.keras.layers.Dense(num_classes,activation = 'softmax') (x)
isinstance(tf.keras.layers.Flatten(), tf.keras.models.Model)
isinstance(conv_base, tf.keras.models.Model)
def set_trainable_layers(mod, num_head, num_base):
import time
for layer in [lay for lay in mod.layers if not isinstance(lay , tf.keras.models.Model)]:
layer.trainable = False
print(layer.name, layer.trainable)
for block in mod.layers:
if isinstance(block, tf.keras.models.Model):
print('Found Submodel')
for layer in block.layers:
layer.trainable = False
print(layer.name, layer.trainable)
if num_base > 0:
for layer in block.layers[-num_base:]:
layer.trainable = True
print(layer.name, layer.trainable)
if num_head > 0:
for layer in [lay for lay in mod.layers if not isinstance(lay, tf.keras.models.Model)][-num_head:]:
layer.trainable = True
print(layer.name, layer.trainable)
'''
Showcase1: First training frozen Model, then unfreezing, recomiling and retraining:
model behaves as expected
'''
mod = tf.keras.models.Model(inputs,out, name = 'TestModel')
set_trainable_layers(mod, 0 ,0)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.fit(ds_train, validation_data = ds_val) # Model should NOT learn
set_trainable_layers(mod, 10,20)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.fit(ds_train, validation_data = ds_val) #Model SHOULD learn
'''
Showcase2: First training unfrozen Model, then reducing number of trainable Layers:
Model behaves as Expected
'''
mod = tf.keras.models.Model(inputs,out, name = 'TestModel')
set_trainable_layers(mod, 10 ,20)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.fit(ds_train, validation_data = ds_val) # Model SHOULD learn
set_trainable_layers(mod, 0,0)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.fit(ds_train, validation_data = ds_val) #Model should NOT learn
'''
Showcase3: First training unfrozen Model, then reducing number of trainable Layers but also trying to trasnfer Optimizer States:
Behaves as subclassed Model: New Optimizer shouldnt have Weights
'''
mod = tf.keras.models.Model(inputs,out, name = 'TestModel')
set_trainable_layers(mod, 1 ,3)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.fit(ds_train, validation_data = ds_val) # Model SHOULD learn
opti_state = mod.optimizer.get_weights()
set_trainable_layers(mod, 4,8)
mod.summary()
mod.compile(optimizer = tf.keras.optimizers.Adam(1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
mod.optimizer.set_weights(opti_state)
mod.fit(ds_train, validation_data = ds_val) #Model should NOT learn
This is happening because one of the fundamental differences between the Subclassing API and the Functional or Sequential APIs in Tensorflow2.
While the Functional or Sequential APIs build a graph of Layers (think of it as a separate data structure), the Subclassing model builds a whole object and stores it as bytecode.
This means that with Subclassing you lose access to the internal connectivity graph and the normal behaviour that allows you to freeze/unfreeze layers or reuse them in other models starts to get weird. Seeing your implementation I would say that the Subclassed model is correct and it SHOULD be working if we were dealing with a library other than Tensorflow that is.
Francois Chollet explains it better than I will ever do in one of his Tweettorials
After some more experiments i have found a workaround for this Problem:
While the model itself cannot be unfrozen/frozen after the first compilation and training, it is however possible to save the model weights to a temporary file model.save_weights('temp.h5') and afterwards reconstructing the model class (Creating a new instance of model class for example) and loading the previous weights with model.load_weights('temp.h5').
However this can also lead to errors occuring when the previous model has both unfrozen and frozen weights. To prevent them you have to either set all layers trainable after the training and before saving weights, or copy the exact trainability structure of the model, and reconstructing the new model such that its layers have the same trainability state as the previous. this is possible with the following functions:
def get_trainability(model): # Takes Keras model and returns dictionary with layer names of Model as key, and its trainability as value/item
train_dict = {}
for layer in model.layers:
if isinstance(layer, tf.keras.models.Model):
train_dict.update(get_trainability(layer))
else:
train_dict[layer.name] = layer.trainable
return train_dict
def set_trainability(model, train_dict): # Takes keras Model and dictionary with layer names and booleans indicating the desired trainability of the layer.
# modifies model so that every Layer in the Model, whose name matches dict key will get trainable = boolean
for layer in model.layers:
if isinstance(layer, tf.keras.models.Model):
set_trainability(layer, train_dict)
else:
for name in train_dict.keys():
if name == layer.name:
layer.trainable = train_dict[name]
print(layer.name)
Hope this helps for simmilar problems in the Future

regularization with customized training in tf.keras (TF2.0)

I have a keras model with regularization initialized with kernel_regularizer. In the customized training loop, where GradientTape is used, does optimizer.apply_gradients applies regularization loss automatically? if not, the following code shows an implementation, is that a good way to apply regularization? Am I doing the right way?
def GetModel():
inputs = Input(shape=(784,), name='digits')
x = Dense(64, activation='relu', kernel_regularizer=l2(1e-4))(inputs)
x = Dense(64, activation='relu', kernel_regularizer=l2(1e-4))(x)
outputs = Dense(10, name='predictions')(x)
model = Model(inputs=inputs, outputs=outputs)
return model
mymodel = GetModel()
#tf.function
def train_step(x, y_true, optimizer):
with tf.GradientTape() as tape:
y_pred = mymodel(x, training=True)
loss_training = my_custom_loss_function(y_true, y_pred)
loss_regularization = tf.math.add_n(mymodel.losses)
loss_total = loss_training + loss_regularization
gradients = tape.gradient(loss_total, mymodel.trainable_variables)
optimizer.apply_gradients(zip(gradients, mymodel.trainable_variables))
return loss_total

How to define and use a custom loss function in keras

I have a model in Keras. The model is using B. cross-entropy (log loss). However, I wanna create my custom B.C.E log loss for it.
here is my model
def get_model(train, num_users, num_items, layers=[20, 10, 5, 2]):
num_layer = len(layers) # Number of layers in the MLP
user_matrix = K.constant(getTrainMatrix(train))
item_matrix = K.constant(getTrainMatrix(train).T)
# Input variables
user_input = Input(shape=(1,), dtype='int32', name='user_input')
item_input = Input(shape=(1,), dtype='int32', name='item_input')
user_rating = Lambda(lambda x: tf.gather(user_matrix, tf.to_int32(x)))(user_input)
item_rating = Lambda(lambda x: tf.gather(item_matrix, tf.to_int32(x)))(item_input)
user_rating = Reshape((num_items, ))(user_rating)
item_rating = Reshape((num_users, ))(item_rating)
MLP_Embedding_User = Dense(layers[0]//2, activation="linear" , name='user_embedding')
MLP_Embedding_Item = Dense(layers[0]//2, activation="linear" , name='item_embedding')
user_latent = MLP_Embedding_User(user_rating)
item_latent = MLP_Embedding_Item(item_rating)
# The 0-th layer is the concatenation of embedding layers
vector = concatenate([user_latent, item_latent])
# Final prediction layer
prediction = Dense(1, activation='sigmoid', kernel_initializer=initializers.lecun_normal(),
name='prediction')(vector)
model_ = Model(inputs=[user_input, item_input],
outputs=prediction)
return model_
Here is the call to the compile function.
model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy')
Now my question is how to define a custome binary cross entropy loss for it?