Use of DeepExplainer to get shap values for an MLP model in Keras with tensorflow backend - tensorflow

I am playing around with DeepExplainer to get shap values for deep learning models. By following some tutorials I can get some results, i.e. what variables are pushing the model prediction from the base value, which is the average model output in training set.
I have around 5,000 observations along with 70 features. The performance of DeepExplainer is quite satisfactory. And my code is:
model0 = load_model(model_p+'health0.h5')
background = healthScaler.transform(train[healthFeatures])
e = shap.DeepExplainer(model0, background)
shap_values = e.shap_values(healthScaler.transform(test[healthFeatures]))
test2 = test[healthFeatures].copy()
test2[healthFeatures] = healthScaler.transform(test[healthFeatures])
shap.force_plot(e.expected_value[0], shap_values[0][947,:], test2.iloc[947,:])
And the plot is the following:
Here the base value is 0.012 (can also be seen through e.expected_value[0]) and very close to the output value which is 0.01.
At this point I have some questions:
1) The output value is not identical to the prediction gotten through model0.predict(test[healthFeatures])[947] = -0.103 How should I assess output value?
2) As can be seen, I am using whole training set as the background to approximate conditional expectations of SHAP values. What is the difference between using random samples from training set and entire set? Is it only related to performance issue?
Many thanks in advance!

Probably too late but stil a most common question that will benefit other begginers. To answer (1), the expected and out values will be different. the expected is, as the name suggest, is the avereage over the scores predicted by your model, e.g., if it was probability then it is the average of the probabilties that your model spits. For (2), as long as the backroung values are less then 5k, it wont change much, but if > 5k then your calculations will take days to finish.
See this (lines 21-25) for more comprehensive answers.

Related

Predict a nonlinear array based on 2 features with scalar values using XGBoost or equivalent

So I have been looking at XGBoost as a place to start with this, however I am not sure the best way to accomplish what I want.
My data is set up something like this
Where every value, whether it be input or output is numerical. The issue I'm facing is that I only have 3 input data points per several output data points.
I have seen that XGBoost has a multi-output regression method, however I am only really seeing it used to predict around 2 outputs per 1 input, whereas my data may have upwards of 50 output points needing to be predicted with only a handful of scalar input features.
I'd appreciate any ideas you may have.
For reference, I've been looking at mainly these two demos (they are the same idea just one is scikit and the other xgboost)
https://machinelearningmastery.com/multi-output-regression-models-with-python/
https://xgboost.readthedocs.io/en/stable/python/examples/multioutput_regression.html

How can I find a standard method of predicting next values of a stock market using Tensorflow?

Thank you for reading. I'm not good at English.
I am wondering how to predict and get future time series data after model training. I would like to get the values after N steps.
I wonder if the time series data has been properly learned and predicted.
How i do this right get the following (next) value?
I want to get the next value using like model.predict or etc
I have x_test and x_test[-1] == t, so the meaning of the next value is t+1, t+2, .... t+n,
In this example I want to get predictions of the next t+1, t+2 ... t+n
First
I tried using stock index data
inputs = total_data[len(total_data) - forecast - look_back:]
inputs = scaler.transform(inputs)
X_test = []
for i in range(look_back, inputs.shape[0]):
X_test.append(inputs[i - look_back:i])
X_test = np.array(X_test)
predicted = model.predict(X_test)
but the result is like below
The results from X_test[-20:] and the following 20 predictions looks like same.
I'm wondering if it's the correct train and predicted value.
I'm wondering if it was a right training and predict.
full source
The method I tried first did not work correctly.
Seconds
I realized something is wrong, I tried using another official data
So, I used the time series in the Tensorflow tutorial to practice predicting the model.
a = y_val[-look_back:]
for i in range(N-step prediction): # predict a new value n times.
tmp = model.predict(a.reshape(-1, look_back, num_feature)) # predicted value
a = a[1:] # remove first
a = np.append(a, tmp) # insert predicted value
The results were predicted in a linear regression shape very differently from the real data.
Output a linear regression that is independent of the real data:
full source (After the 25th line is my code.)
I'm really very curious what is a standard method of predicting next values of a stock market.
Thank you for reading the long question. I seek advice about your priceless opinion.
Q : "How can I find a standard method of predicting next values of a stock market...?"
First - salutes to C64 practitioner!
Next, let me say, there is no standard method - there cannot be ( one ).
Principally - let me draw from your field of a shared experience - one can easily predict the near future flow of laminar fluids ( a technically "working" market instrument - is a model A, for which one can derive a better or worse predictive tool )
That will never work, however, for turbulent states of the fluids ( just read the complexity of the attempts to formulate the many-dimensional high-order PDE for a turbulence ( and it still just approximates the turbulence ) ) -- and this is the fundamentally "working" market ( after some expected fundamental factor was released ( read NFP or CPI ) or some flash-news was announced in the news - ( read a Swiss release of currency-bonding of CHF to some USD parity or Cyprus one time state tax on all speculative deposits ... the financial Big Bangs follow ... )
So, please, do not expect one, the less any simple, model for reasonably precise predictions, working for both the laminar and turbulent fluidics - the real world is for sure way more complex than this :o)

Tensorflow Tensorboard - should I follow the "smooth" value or the "Value"?

I am using TF tensorboard to monitor the training progress for a model. I am getting a bit confused because I am seeing the two points that represent the validation loss value showing a different direction:
Time=13:30 Smoothed=18.33 Value=15.41..........
Time=13:45 Smoothed=17.76 Value=16.92
In this case, is the validation loss increasing or decreasing? thanks!
As I cannot put figures in the comments, have a look at this graph.
If you watch the falling slope between x = 50 and x = 100, you will see that locally, the real values increase at some points (usually after downward spikes). So you could conclude that your function values are increasing. But at a larger scope you will see that the function values are decreasing. The smoothing helps you to get make the interpretation easier, but does not return exact values.
Coming back to the local example, it would give you the insight that the overall trend is a decreasing function, but it does not provide accurate loss values.

Reason why setting tensorflow's variable with small stddev

I have a question about a reason why setting TensorFlow's variable with small stddev.
I guess many people do test MNIST test code from TensorFlow beginner's guide.
As following it, the first layer's weights are initiated by using truncated_normal with stddev 0.1.
And I guessed if setting it with more bigger value, then it would be the same result, which is exactly accurate.
But although increasing epoch count, it doesn't work.
Is there anybody know this reason?
original :
W_layer = tf.Variable(tf.truncated_normal([inp.get_shape()[1].value, size],stddev=0.1), name='w_'+name)
#result : (990, 0.93000001, 0.89719999)
modified :
W_layer = tf.Variable(tf.truncated_normal([inp.get_shape()[1].value, size],stddev=200), name='w_'+name)
#result : (99990, 0.1, 0.098000005)
The reason is because you want to keep all the layer's variances (or standard deviations) approximately the same, and sane. It has to do with the error backpropagation step of the learning process and the activation functions used.
In order to learn the network's weights, the backpropagation step requires knowledge of the network's gradient, a measure of how strong each weight influences the input to reach the final output; layer's weight variance directly influences the propagation of gradients.
Say, for example, that the activation function is sigmoidal (e.g. tf.nn.sigmoid or tf.nn.tanh); this implies that all input values are squashed into a fixed output value range. For the sigmoid, it is the range 0..1, where essentially all values z greater or smaller than +/- 4 are very close to one (for z > 4) or zero (for z < -4) and only values within that range tend to have some meaningful "change".
Now the difference between the values sigmoid(5) and sigmoid(1000) is barely noticeable. Because of that, all very large or very small values will optimize very slowly, since their influence on the result y = sigmoid(W*x+b) is extremely small. Now the pre-activation value z = W*x+b (where x is the input) depends on the actual input x and the current weights W. If either of them is large, e.g. by initializing the weights with a high variance (i.e. standard deviation), the result will necessarily be (relatively) large, leading to said problem. This is also the reason why truncated_normal is used rather than a correct normal distribution: The latter only guarantees that most of the values are very close to the mean, with some less than 5% chance that this is not the case, while truncated_normal simply clips away every value that is too big or too small, guaranteeing that all weights are in the same range, while still being normally distributed.
To make matters worse, in a typical neural network - especially in deep learning - each network layer is followed by one or many others. If in each layer the output value range is big, the gradients will get bigger and bigger as well; this is known as the exploding gradients problem (a variation of the vanishing gradients, where gradients are getting smaller).
The reason that this is a problem is because learning starts at the very last layer and each weight is adjusted depending on how much it contributed to the error. If the gradients are indeed getting very big towards the end, the very last layer is the first one to pay a high toll for this: Its weights get adjusted very strongly - likely overcorrecting the actual problem - and then only the "remaining" error gets propagated further back, or up, the network. Here, since the last layer was already "fixed a lot" regarding the measured error, only smaller adjustments will be made. This may lead to the problem that the first layers are corrected only by a tiny bit or not at all, effectively preventing all learning there. The same basically happens if the learning rate is too big.
Finding the best weight initialization is a topic by itself and there are somewhat more sophisticated methods such as Xavier initialization or Layer-sequential unit variance, however small normally distributed values are usually simply a good guess.

Tensorflow: opt.compute_gradients() returns values different from the weight difference of opt.apply_gradients()

Question: What is the most efficient way to get the delta of my weights in the most efficient way in a TensorFlow network?
Background: I've got the operators hooked up as follows (thanks to this SO question):
self.cost = `the rest of the network`
self.rmsprop = tf.train.RMSPropOptimizer(lr,rms_decay,0.0,rms_eps)
self.comp_grads = self.rmsprop.compute_gradients(self.cost)
self.grad_placeholder = [(tf.placeholder("float", shape=grad[1].get_shape(), name="grad_placeholder"), grad[1]) for grad in self.comp_grads]
self.apply_grads = self.rmsprop.apply_gradients(self.grad_placeholder)
Now, to feed in information, I run the following:
feed_dict = `training variables`
grad_vals = self.sess.run([grad[0] for grad in self.comp_grads], feed_dict=feed_dict)
feed_dict2 = `feed_dict plus gradient values added to self.grad_placeholder`
self.sess.run(self.apply_grads, feed_dict=feed_dict2)
The command of run(self.apply_grads) will update the network weights, but when I compute the differences in the starting and ending weights (run(self.w1)), those numbers are different than what is stored in grad_vals[0]. I figure this is because the RMSPropOptimizer does more to the raw gradients, but I'm not sure what, or where to find out what it does.
So back to the question: How do I get the delta on my weights in the most efficient way? Am I stuck running self.w1.eval(sess) multiple times to get the weights and calc the difference? Is there something that I'm missing with the tf.RMSPropOptimizer function.
Thanks!
RMSprop does not subtract the gradient from the parameters but use more complicated formula involving a combination of:
a momentum, if the corresponding parameter is not 0
a gradient step, rescaled non uniformly (on each coordinate) by the square root of the squared average of the gradient.
For more information you can refer to these slides or this recent paper.
The delta is first computed in memory by tensorflow in the slot variable 'momentum' and then the variable is updated (see the C++ operator).
Thus, you should be able to access it and construct a delta node with delta_w1 = self.rmsprop.get_slot(self.w1, 'momentum'). (I have not tried it yet.)
You can add the weights to the list of things to fetch each run call. Then you can compute the deltas outside of TensorFlow since you will have the iterates. This should be reasonably efficient, although it might incur an extra elementwise difference, but to avoid that you might have to hack around in the guts of the optimizer and find where it puts the update before it applies it and fetch that each step. Fetching the weights each call shouldn't do wasteful extra evaluations of part of the graph at least.
RMSProp does complicated scaling of the learning rate for each weight. Basically it divides the learning rate for a weight by a running average of the magnitudes of recent gradients of that weight.