I have a project with requirements that response time should be under 0.5sec under load as 3000 concurrency users;
I have few API which use some aggregation from SQL Server.
when we testing it with 3000CCU average response time about 15 second. And also 500 error due to SQL can't handle so many requests. Actually requests to SQL Server interrupt with timeout)
Our current instance is r4.2xlarge 8CPU and 61GB Memory.
All code is asynchronous without blocking operations.
We running our app behind load balancer with 10 instances 300 CCU per instance in this case. utilization on instances about 30%. The bottleneck currently is SQL server.
I see few solution. Setup some big SQL, Cluster or Sharding, I'm not really sure. I'm not strong in that.
Or use cache for request. We have mostly read only data, which we can cache after aggregation.
Update:
I need solution to cache exactly sql responses. To order work with it late with LINQ.
But it seems there is no ready solution for that.
I found good try for that called CacheManager. But there are few problems exist with this.
It works with Redis only in sync mode, means use sync command instead of async.
There is no implementation of concurrency lock, which can occur in our case because we have 10 instances. We need solution which work with as distributed cache.
There are few bugs which utilize Redis multiplexor wrong. And you constantly will have connection problem.
Please advice how to overcome this issue. How you solve it. I'm sure there are people who already solve it somehow.
I enable query store on sql and monitor all missing indexes. Ef core generates some of request absolutely different way that expected. After creating missing indexes performance became much better. But i still have problem to handle required CCU. I explore all existing solution which extend ef core to cache. Most of them was written in sync version. Which just can’t utilize all benefits of async. As well i did’t found any distributed cache that implement distributed lock. Finally I create this lib which extend ef core and and distributed cache in redis .cache allow us scale a lot more. And now everything just flight;) leave it here, for someone who have performance issue like me. https://github.com/grinay/Microsoft.EntityFrameworkCore.DistributedCache
Related
We are currently testing an upgrade from CF11 to CF2018 for my company's intranet. To give you an idea how long this site has been running, our first version of CF was 3.1! It is still using application.cfm, and there is code from 1998, when I started writing this thing. Yes, 21 years -- I'm astonished, too. It is a hodgepodge of all kinds of older frameworks, too, including Fusebox.
Anyway, we're running Win 2012 VM connected to a SQL 2016 farm. Everything looked OK initially, but in the Week I've been testing, the server has come to a slowdown once (a page took more than 5 seconds to run, something that usually takes 100ms, no DB involvement), and another time, the server came to a grinding halt. The only way I could restart CF App service was by connecting to the server with another server via Services, because doing it via Remote Desktop was so slow.
Now keep in mind -- it's just me testing. This is a site that doesn't have a ton of users, but still, having 5 concurrent connections is normal and there are upwards of 200-400 users hitting this thing every day.
I have FusionReactor running on this thing now, so the next time a lockup happens, I will be able to take a closer look, but what do you think is the best way I can test this? Our site is mostly transactional, users going and filling out forms to put internal orders through. We also connect to XML web services and REST services; we also provide REST services, too. Obviously there's no way to completely replicate a production server's requests onto a test server, but I need to do more thorough testing. Any advice would be hugely appreciated.
I realize your focus for now is trying to recreate the problem on test. That may not be as easy as hoped. Instead, you should be able to understand and resolve it in production. FusionReactor can help, but the answer may well be in the cf logs.
You don't mention assessing the logs at the time of the hangup. See especially the coldfusion-error log, for outofmemory conditions.
You mention raising the heap, but the problem may be with the metaspace instead. If so, consider simply removing the maxmetaspace setting in the jvm args. That may be the sole and likely cause of such new and unexpected outages.
Or if it's not, and there's nothing in the logs at the time, THEN do consider FR. Does IT show anything happening at the time?
If not then consider a need to tune the cf/web server connector. I assume you're using iis. How many sites do you have? And how many connectors (folders in the cf config/wsconfig folder)? What are the settings in their workers.properties file? Are they optimized for the number of sites using that connector?
Also, have you updated cf2018? Are there any errors in the update error log? Did you update the web server connector also?
Are you running the cf2018 pmt (performance monitoring tool set)? Have you updated it?
There could be still more to consider, but let's see how it goes with those. I have blog posts on these and many more topics that would elaborate on things, both at my site (carehart.org) and the Adobe cf portal (coldfusion.adobe.com).
But let's hear if any of this gets you going.
Imagine we have a web-site which sends write and read requests into some DB via Hibernate. I use Java, but it doesn't matter for this question.
Usually we want to read the fresh data from DB. But I want to introduce some delay between the written data becomes visible to reads just to increase the performance. I.e. I dont need to "publish" the rows inserted into DB immediately. Its OK for me to "publish" fresh data after some delay.
How can I achieve it?
As far as I understand this can be set up on several different tiers of my system.
I can cache some requests in front-end. Probably I should set up proxy server for this. But this will work only if all the parameters of the query match.
I can cache the read requests in Hibernate. OK, but can I specify or estimate the average time the read query will return stale data after some fresh insert occurred? In other words how can I control the delay time between fresh data becomes visible to the users?
Or may be I should use something like a memcached system instead of Hibernate cache?
Probably I can set something in DB. I dont know what should I do with DB. Probably I can ease the isolation level to burst the performance of my DB.
So, which way is the best one?
And the main question, of course: does the relaxation of requirements I introduce here may REALLY help to increase the performance of my system?
If I am reading your architecture correct you have client -> server -> database server
Answers to each point
This will put the burden on the client to implement the caching if you only use your own client I would go for this method. It will have the side effect of improving client performance possibly and put less load on the server and database server so they will scale better.
Now caching on the server will improve scalability of the database server and possibly performance in the client but will put a memory burden on the server. This would be my second option
Implement something in the database. At this point what are you gaining? the database server still has to do work to determine what rows to send back. And also you will get no scalability benefits.
So to sum up I would cache at the client first if you can if not cache at the server. Leave the DB out of the loop.
To answer your main question - caching is one of the most effective ways of increasing both performance and scalability of web applications which are constrained by database performance - your application may or may not fall into this category.
In general, I'd recommend setting up a load testing rig, and measure the various parts of your app to identify the bottleneck before starting to optimize.
The most effective cache is one outside your system - a CDN or the user's browser. Read up on browser caching, and see if there's anything you can cache locally. Browsers have caching built in as a standard feature - you control them via HTTP headers. These caches are very effective, because they stop requests even reaching your infrastructure; they are very efficient for static web assets like images, javascript files or stylesheets. I'd consider a proxy server to be in the same category. The major drawback is that it's hard to manage this cache - once you've said to the browser "cache this for 2 weeks", refreshing it is hard.
The next most effective caching layer is to cache (parts of) web pages on your application server. If you can do this, you avoid both the cost of rendering the page, and the cost of retrieving data from the database. Different web frameworks have different solutions for this.
Next, you can cache at the ORM level. Hibernate has a pretty robust implementation, and it provides a lot of granularity in your cache strategies. This article shows a sample implementation, including how to control the expiration time. You get a lot of control over caching here - you can specify the behaviour at the table level, so you can cache "lookup" data for days, and "transaction" data for seconds.
The database already implements a cache "under the hood" - it will load frequently used data into memory, for instance. In some applications, you can further improve the database performance by "de-normalizing" complex data - so the import routine might turn a complex data structure into a simple one. This does trade of data consistency and maintainability against performance.
I have the need to access a sybase database (12.5) from oversea. The high latency is definitely a problem.
I already optimized the connection parameters to make better use of the network and achieved a 20x performance increase, but it's still not enough : 1 minute to get 3Mb of data.
We need another 10x or 20x increase for our application.
Technical data :
the data are flowing through a single TCP connection using the TDS protocol
the client app is an excel sheet with macros, using the default Sybase driver
the corporate environment makes it difficult to push big changes in the 10+ years architecture, so solutions need to be the least intrusive. But some changes may be bargained due to the importance of this project.
Can anyone give me pointers ?
I already thought of :
splitting SQL requests over several concurrent connections to the database. The problem is data consistency : what if records are modified at the same time since requests will not be exactly executed at the same time ? Is there an existing mechanism to spread a request over several calls on different connections ?
using some kind of database "cache" or "local replication" oversea, but I don't know what is possible.
Thanks.
Try to install local database (ASE or ASA) and synchronize this databases with Sybase Mobilink (or Sybase Replication Server if you need small replication latency and you have a lot of money).
(I know I answer to my own question)
Eventually, we settled to designing our own database remote access protocol. It's not complicated since we are only using a basic subset of SQL (SELECT and UPDATE), and the protocol doesn't have to understand SQL anyway.
By using our own protocol, we'll be able to use compression, make the client able to use several TCP links at the same time, maximize network utilisation and add some functionnal caching secific to our application.
The client will be our app and the server will be a "proxy" to the real database, sitting next to it (like #Tim suggested in the comments).
It's not the only solution, but we feel that it's a good balance between enormous replication price, development complexity and expected benefits.
Background to question: I'm looking to implement a caching system for my website. Currently we're exploring memcache as a means of doing this. However, I am looking to see if something similar exists for SQL Server. I understand that MySQL has query cache which although is not distributed works as a sort of 'stop gap' measure. Is MySQL query cache equivalent to the buffer cache in SQL Server?
So here are my questions:
Is there a way to know is currently stored in the buffer cache?
Follow up to this, is there a way to force certain tables or result sets into the cache
How much control do I have over what goes on in the buffer and procedure cache? I understand there used to be a DBCC PINTABLE command but that has since been discontinued.
Slightly off topic: Should the caching even exists on the database layer? Or it is more prudent to manage caches using Velocity/Memcache? Is so, why? It seems like cache invalidation is something of a pain when handling many objects with overlapping triggers.
Thanks!
SQL Server implements a buffer pool same way every database product under the sun does (more or less) since System R showed the way. The gory details are explain in Transaction Processing: Concepts and Techniques. I addition it has a caching framework used by the procedure cache, permission token cache and many many other caching classes. This framework is best described in Clock Hands - what are they for.
But this is not the kind of caching applications are usually interested in. The internal database cache is perfect for scale-up scenarios where a more powerfull back end database is able to respond faster to more queries by using these caches, but the modern application stack tends to scale out the web servers and the real problem is caching the results of query interogations in a cache used by the web farm. Ideally, this cache should be shared and distributed. Memcached and Velocity are examples of such application caching infrastructure. Memcache has a long history by now, its uses and shortcommings are understood, there is significant know-how around how to use it, deploy it, manage it and monitor it.
The biggest problem with caching in the application layer, and specially with distributed caching, is cache invalidation. How to detect the changes that occur in the back end data and mark cached entries invalid so that new requests don't use stale data.
The simplest (for some definition of simple...) alternative is proactive invalidation from the application. The code knows when it changes an entity in the database, and after the change occurs it takes the extra step to mark the cached entries invalid. This has several short commings:
Is difficult to know exactly which cached entries are to be invalidated. Dependencies can be quite complex, things are always more that just a simple table/entry, there are aggregate queries, joins, partitioned data etc etc.
Code discipline is required to ensure all paths that modify data also invalidate the cache.
Changes to the data that occur outside the application scope are not detected. In practice, there are always changes that occur outside the application scope: other applications using the same data, import/export and ETL jobs, manual intervention etc etc.
A more complicated alternative is a cache that is notified by the database itself when changes occur. Not many technologies are around to support this though, it cannot work without an active support from the database. SQL Server has Query Notifications for such scenarios, you can read more about it at The Mysterious Notification. Implementing QN based caching in a standalone application is fairly complicated (and often done badly) but it works fine when implemented correctly. Doing so in a shared scaled out cache like Memcached is quite a feats of strength, but is doable.
Nai,
Answers to your questions follow:
From Wiki - Always correct... ? :-). For a more Microsoft answer, here is their description on Buffer Cache.
Buffer management
SQL Server buffers pages in RAM to
minimize disc I/O. Any 8 KB page can
be buffered in-memory, and the set of
all pages currently buffered is called
the buffer cache. The amount of memory
available to SQL Server decides how
many pages will be cached in memory.
The buffer cache is managed by the
Buffer Manager. Either reading from or
writing to any page copies it to the
buffer cache. Subsequent reads or
writes are redirected to the in-memory
copy, rather than the on-disc version.
The page is updated on the disc by the
Buffer Manager only if the in-memory
cache has not been referenced for some
time. While writing pages back to
disc, asynchronous I/O is used whereby
the I/O operation is done in a
background thread so that other
operations do not have to wait for the
I/O operation to complete. Each page
is written along with its checksum
when it is written. When reading the
page back, its checksum is computed
again and matched with the stored
version to ensure the page has not
been damaged or tampered with in the
meantime.
For this answer, please refer to the above answer:
Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version.
You can query the bpool_commit_target and bpool_committed columns in the sys.dm_os_sys_info catalog view to return the number of pages reserved as the memory target and the number of pages currently committed in the buffer cache, respectively.
I feel like Microsoft has had time to figure out caching for their product and should be trusted.
I hope this information was helpful,
Thanks!
Caching can take many different meaning for an ASP.Net application spread from the browser all the way to your hardware with the IIS, Application, Database thrown in the middle.
The caching you are talking about is Database level caching, this is mostly transparent to your application. This level of caching will include buffer pools, statement caches etc. Make sure your DB server has plenty of RAM. In theory a DB server should be able to load the entire DB store in memory. There is not much you can do at this level unless you pre-fetch some anticipated data when you start the application and ensure that it is in DB cache.
On the other hand is in-memory distributed caching system. Apart from memcache and velocity, you can look at some commercial solutions like NCache or Oracle Coherence. I have no experience in either of them to recommend. This level of caching promises scalability at a cheaper cost. It is expensive to scale the DB tier compared to this. You may have to consider aspects like network bandwidth though. This type of caching, specially with invalidation and expiry can be complicated
You can cache at Web Service tier using output caching at IIS level (in IIS 7) and ASP.Net level.
At the application level you can use ASP.Net cache. This is the one that you can control most and gives you good benefits.
Then there is caching going on at client web proxy tier that can be controlled by cache-control HTTP header.
Finally you have browser level caching, view state and cookies for small data.
And don't forget that hardware like SAN caches at physical disk access level too.
In summary caching can occur at many levels and it for you to analyse and implement the best solution for your scenario. You have find out stability and volatility of your data, expected load etc. I believe caching at ASP.Net level (specially for objects) gives you most flexibility and control.
Your specific technical questions about SQL Server's buffer cache are going down the wrong path when it comes to "implement a caching system for my website".
Sure, SQL Server is going to cache data so it can improve its performance (and it does so rather well), but the point of implementing a caching layer on your web front-ends is to avoid from having to talk to the database at all - because there is still overhead and resource contention even when your query is fulfilled entirely from SQL Server's cache.
You want to be looking into is: memcached, Velocity, ASP.NET Cache, P&P Caching Application Block, etc.
Am using Lucene API in my web portal which is going to have 1000s of concurrent users.
Our web server will call Lucene API which will be sitting on an app server.We plan to use 2 app servers for load balancing.
Given this, what should be our strategy for replicating lucene indexes on the 2nd app server?any tips please?
You could use solr, which contains built in replication. This is possibly the best and easiest solution, since it probably would take quite a lot of work to implement your own replication scheme.
That said, I'm about to do exactly that myself, for a project I'm working on. The difference is that since we're using PHP for the frontend, we've implemented lucene in a socket server that accepts queries and returns a list of db primary keys. My plan is to push changes to the server and store them in a queue, where I'll first store them into the the memory index, and then flush the memory index to disk when the load is low enough.
Still, it's a complex thing to do and I'm set on doing quite a lot of work before we have a stable final solution that's reliable enough.
From experience, Lucene should have no problem scaling to thousands of users. That said, if you're only using your second App server for load balancing and not for fail over situations, you should be fine hosting Lucene on only one of those servers and accessing it via NDS (if you have a unix environment) or shared directory (in windows environment) from the second server.
Again, this is dependent on your specific situation. If you're talking about having millions (5 or more) of documents in your index and needing your lucene index to be failoverable, you may want to look into Solr or Katta.
We are working on a similar implementation to what you are describing as a proof of concept. What we see as an end-product for us consists of three separate servers to accomplish this.
There is a "publication" server, that is responsible for generating the indices that will be used. There is a service implementation that handles the workflows used to build these indices, as well as being able to signal completion (a custom management API exposed via WCF web services).
There are two "site-facing" Lucene.NET servers. Access to the API is provided via WCF Services to the site. They sit behind a physical load balancer and will periodically "ping" the publication server to see if there is a more current set of indicies than what is currently running. If it is, it requests a lock from the publication server and updates the local indices by initiating a transfer to a local "incoming" folder. Once there, it is just a matter of suspending the searcher while the index is attached. It then releases its lock and the other server is available to do the same.
Like I said, we are only approaching the proof of concept stage with this, as a replacement for our current solution, which is a load balanced Endeca cluster. The size of the indices and the amount of time it will take to actually complete the tasks required are the larger questions that have yet to be proved out.
Just some random things that we are considering:
The downtime of a given server could be reduced if two local folders are used on each machine receiving data to achieve a "round-robin" approach.
We are looking to see if the load balancer allows programmatic access to have a node remove and add itself from the cluster. This would lessen the chance that a user experiences a hang if he/she accesses during an update.
We are looking at "request forwarding" in the event that cluster manipulation is not possible.
We looked at solr, too. While a lot of it just works out of the box, we have some bench time to explore this path as a learning exercise - learning things like Lucene.NET, improving our WF and WCF skills, and implementing ASP.NET MVC for a management front-end. Worst case scenario, we go with something like solr, but have gained experience in some skills we are looking to improve on.
I'm creating the Indices on the publishing Backend machines into the filesystem and replicate those over to the marketing.
That way every single, load & fail balanced, node has it's own index without network latency.
Only drawback is, you shouldn't try to recreate the index within the replicated folder, as you'll have the lockfile lying around at every node, blocking the indexreader until your reindex finished.