Beforehand, I thank you for analyzing my post and helping out. I've recently gotten interested in ML with Tensorflow,
but I've encountered a problem with my code. I'm reading a book called Learning TensorFlow, and I've written out the whole thing
from the first example. They are analyzing MNIST images, and I've also added my own comments with my perspective on how things work
in the code. When I run the code, however, I get an error. Here's my code, and the error.
#Import tensorflow under the name of ts
import tensorflow as tf
#Import MNIST tutorial data from tensorflow
from tensorflow.examples.tutorials.mnist import input_data
#Declare constants
#Data path
DATA_DIR = 'C:/tmp/data'
#Number of steps
NUM_STEPS = 1000
#Number of examples per step
MINIBATCH_SIZE = 100
#When we read the data-set it saves it locally under our data path, or under c:/tmp/data
data = input_data.read_data_sets(DATA_DIR, one_hot = True)
#Our placeholder X is the image. Placeholders are supplied when running the computation graph
x = tf.placeholder(tf.float32, [None, 784])
#Create a variable representing the weights. Variables are manipulated by the computation graph
W = tf.Variable(tf.zeros([784, 10]))
y_true = tf.placeholder(tf.float32, [None, 784])
y_pred = tf.matmul(x, W)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=y_pred, labels=y_true))
gd_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_mask = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_mask, tf.float32))
with tf.Session() as sess:
#Initialize global variables
sess.run(tf.global_variables_initializer())
for _ in range(NUM_STEPS):
batch_xs, batch_ys = data.train.next_batch(MINIBATCH_SIZE)
sess.run(gd_step, feed_dict={x: batch_xs, y_true: batch_ys})
ans = sess.run(accuracy, feed_dict={x: data.test.images,
y_true: data.test.labels})
print("Accuracy: {:.4}%".format(ans*100))
Now here's the error.
runfile('C:/Users/user/.spyder-py3/temp.py', wdir='C:/Users/user/.spyder-py3')
Extracting C:/tmp/data\train-images-idx3-ubyte.gz
Extracting C:/tmp/data\train-labels-idx1-ubyte.gz
Extracting C:/tmp/data\t10k-images-idx3-ubyte.gz
Extracting C:/tmp/data\t10k-labels-idx1-ubyte.gz
Traceback (most recent call last):
File "<ipython-input-11-bf503334b166>", line 1, in <module>
runfile('C:/Users/user/.spyder-py3/temp.py', wdir='C:/Users/CwWJc/.spyder-py3')
File "C:\Users\user\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
execfile(filename, namespace)
File "C:\Users\user\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/user/.spyder-py3/temp.py", line 38, in <module>
sess.run(gd_step, feed_dict={x: batch_xs, y_true: batch_ys})
File "C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 950, in run
run_metadata_ptr)
File "C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1149, in _run
str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (100, 10) for Tensor
'Placeholder_15:0', which has shape '(?, 784)'
Any help is greatly appreciated. Sorry if I'm making a stupid mistake. I find that I often do, though. Thanks in advance! Also, sorry for garbage formatting. :)
Hahaha! I got y_true mixed up. Sorry for the hassle everyone.
Related
I am using finetune AlexNet architecture written by #kratzert on my own dataset which, works properly (I got the code from here: https://github.com/kratzert/finetune_alexnet_with_tensorflow) and I want to figure out how to build confusion matrix from his code. I have tried to use tf.confusion_matrix(labels, predictions, num_classes) to build confusion matrix but I can't. I am confused what should be the values for labels and predictions, I mean, I know what should be but each time I feed these value got an error. Can anyone help me on this or have a look at the code (above link) and guide me?
I added these two lines in finetune.py exactly after calculating accuracy to make the labels and the predictions as the number of the class.
with tf.name_scope("accuracy"):
correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
**true_class = tf.argmax(y, 1)
predicted_class = tf.argmax(score, 1)**
and I have added tf.confusion_matrix() inside my session at the very bottom before saving checkpoint of the model
for _ in range(val_batches_per_epoch):
img_batch, label_batch = sess.run(next_batch)
acc, cost = sess.run([accuracy, loss], feed_dict={x: img_batch,
y: label_batch,
keep_prob: 1.})
test_acc += acc
test_count += 1
test_acc /= test_count
print("{} Validation Accuracy = {:.4f} -- Validation Loss = {:.4f}".format(datetime.now(),test_acc, cost))
print("{} Saving checkpoint of model...".format(datetime.now()))
**print(sess.run(tf.confusion_matrix(true_class, predicted_class, num_classes)))**
# save checkpoint of the model
checkpoint_name = os.path.join(checkpoint_path,
'model_epoch'+str(epoch+1)+'.ckpt')
save_path = saver.save(sess, checkpoint_name)
print("{} Model checkpoint saved at {}".format(datetime.now(),
checkpoint_name))
I have tried other places as well but each time I will get an error:
Caused by op 'Placeholder_1', defined at:
File "/home/armin/Desktop/Alexnet_DataPipeline/finetune.py", line 85, in <module>
y = tf.placeholder(tf.float32, [batch_size, num_classes])
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/array_ops.py", line 1777, in placeholder
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 4521, in placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3290, in create_op
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1654, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [128,3]
any help will be appreciated, Thanks.
It's a fairly long piece of code you're referring to, and you did not specify where you put your confusion matrix line.
Just by experience, the most frequent problem with confusion matrices is that tf.confusion_matrix() requires both the labels and the predictions as the number of the class, not as one-hot vectors. In other words, the label and the prediction should be in the form of the number 5 instead of [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ].
In the code you refer to, y is in the one-hot format. The output of the network, score is a vector, giving the probability of each class. That is also not the required format. You need to do something like
true_class = tf.argmax( y, 1 )
predicted_class = tf.argmax( score, 1 )
and use those with the confusion matrix like
tf.confusion_matrix( true_class, predicted_class, num_classes )
(Basically, if you take a look at line 123 of finetune.py, that has both of those elements for determining accuracy, but they are not saved in separate tensors.)
If you want to keep a running total of confusion matrices of all batches, you just have to add them up - since each cell of the matrix counts the number of examples falling into that category, an element-wise addition creates the confusion matrix for the whole set:
cm_running_total = None
cm_nupmy_array = sess.run(tf.confusion_matrix(true_class, predicted_class, num_classes), feed_dict={x: img_batch, y: label_batch, keep_prob: 1.} )
if cm_running_total is None:
cm_running_total = cm_numpy_array
else:
cm_running_total += cm_numpy_array
I want to do some non-tensorflow processing on the computed gradients, before applying them on the variables.
My plan was to run the gradient ops that I get from the compute_gradients function , do my processing (in python without tensorflow), and then run the apply operation I get from the apply_gradients function and feed the processed gradients in the feed_dict. Unfortunately, this doesn't work in my scenario.
I managed to narrow it down to some issue with tf.nn.embedding_lookup (same happens with tf.gather), and the error can be reproduced as follows (using tf1.4):
import tensorflow as tf
x = tf.placeholder(dtype=tf.float32, shape=[])
z = tf.placeholder(dtype=tf.int32, shape=[])
emb_mat = tf.get_variable('w', [100, 5], initializer=tf.truncated_normal_initializer(stddev=0.1))
emb = tf.nn.embedding_lookup(emb_mat, z)
loss = x - tf.reduce_sum(emb) # Just some silly loss
opt = tf.train.GradientDescentOptimizer(0.1)
grads_and_vars = opt.compute_gradients(loss, tf.trainable_variables())
train_op = opt.apply_gradients(grads_and_vars)
grads = [g for g,v in grads_and_vars]
tsess = tf.Session()
tsess.run(tf.global_variables_initializer())
gradsres = tsess.run(grads, {x: 1.0, z: 1})
tsess.run(train_op, {g:r for g,r in zip(grads, gradsres)})
which results in the error
Traceback (most recent call last):
File "/home/cruvadom/.p2/pool/plugins/org.python.pydev_6.0.0.201709191431/pysrc/_pydevd_bundle/pydevd_exec.py", line 3, in Exec
exec exp in global_vars, local_vars
File "<console>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 889, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1098, in _run
raise ValueError('Tensor %s may not be fed.' % subfeed_t)
ValueError: Tensor Tensor("gradients/Gather_1_grad/ToInt32:0", shape=(2,), dtype=int32, device=/device:GPU:0) may not be fed.
It seems there is some additional tensor I need to feed to the graph for the computation. What is the right way to do why I want to do?
Thanks!
If you run the training operation, it will automatically calculate the gradients. You can retrieve the gradients from the session:
tsess = tf.Session()
tsess.run(tf.global_variables_initializer())
_, grads_and_vars, loss = tsess.run([train_op ,grads, loss], {x: 1.0, z: 1})
assert not np.isnan(loss), 'Something wrong! loss is nan...'
#Get the gradients
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad_histogram".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
We are currently trying to replicate the results of the following paper: https://openreview.net/forum?id=H1S8UE-Rb
To do so, we need to run backpropagation on a neural network which contains complex valued weights.
When we try to do so (with code [0]), we get an error (at [1]). We cannot find the source code for any project that trains a neural network containing complex valued weights.
We were wondering if we would need to implement the paper's backpropagation adjustments ourselves or if this is already part of some neural network libraries. If it needs to be implemented in Tensorflow, what would be the proper steps to achieve that?
[0]:
def define_neuron(x):
"""
x is input tensor
"""
x = tf.cast(x, tf.complex64)
mnist_x = mnist_y = 28
n = mnist_x * mnist_y
c = 10
m = 10 # m needs to be calculated
with tf.name_scope("linear_combination"):
complex_weight = weight_complex_variable([n,m])
complex_bias = bias_complex_variable([m])
h_1 = x # complex_weight + complex_bias
return h_1
def main(_):
mnist = input_data.read_data_sets(
FLAGS.data_dir,
one_hot=True,
)
# `None` for the first dimension in this shape means that it is variable.
x_shape = [None, 784]
x = tf.placeholder(tf.float32, x_shape)
y_ = tf.placeholder(tf.float32, [None, 10])
yz = h_1 = define_neuron(x)
y = tf.nn.softmax(tf.abs(yz))
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=y_,
logits=y,
)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('adam_optimizer'):
optimizer = tf.train.AdamOptimizer(1e-4)
optimizer = tf.train.GradientDescentOptimizer(1e-4)
train_step = optimizer.minimize(cross_entropy)
[1]:
Extracting /tmp/tensorflow/mnist/input_data/train-images-idx3-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data/train-labels-idx1-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data/t10k-images-idx3-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data/t10k-labels-idx1-ubyte.gz
Traceback (most recent call last):
File "complex.py", line 156, in <module>
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
File "/Users/kevin/wdev/learn_tensor/env/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "complex.py", line 58, in main
train_step = optimizer.minimize(cross_entropy)
File "/Users/kevin/wdev/learn_tensor/env/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py", line 343, in minimize
grad_loss=grad_loss)
File "/Users/kevin/wdev/learn_tensor/env/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py", line 419, in compute_gradients
[v for g, v in grads_and_vars
File "/Users/kevin/wdev/learn_tensor/env/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py", line 547, in _assert_valid_dtypes
dtype, t.name, [v for v in valid_dtypes]))
ValueError: Invalid type tf.complex64 for linear_combination/Variable:0, expected: [tf.float32, tf.float64, tf.float16].
I have also tried to implement a similar network in tensorflow and saw that the optimizer cannot do backpropagation using complex valued tensors. The work around is to have separate real tensors for the real and imaginary parts. You will have to do write a function that will get the amplitude of the "complex" output of the network which is simply Re^2 - Im^2. This output value is what you will use to compute the loss.
Using the optimizer won't work it is a reported issue and I don't think tf 2 support it yet. You can however make it by hand, for example:
[...]
gradients = tf.gradients(mse, [weights])[0]
training_op = tf.assign(weights, weights - learning_rate * gradients)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
sess.run(training_op)
Gradients here do as expected and compute the gradient as it should. Here is the discussion on what the gradient compute for complex variables.
Hi, Im trying to adapt the beginners tutorial of Tensorflow with MNIST and softmax. In the tutorial you have 10 clases (for digits 0-9).
Now, with a different dataset (EMNIST) I have 62 classes for digits and letters.
What I have in the model of the orginal example is:
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b`
Where 784 stands for the total pixels of a 28x28 image and 10 is the number of classes. What I want is:
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 62]))
b = tf.Variable(tf.zeros([62]))
y = tf.matmul(x, W) + b`
For 62 classes.
But when I reach this part of the code, where the next batch is called for execution:
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
I get this error...
Traceback (most recent call last):
File "calligraphy.py", line 77, in <module>
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
File "C:\Users\Willy Barales\Anaconda3\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "calligraphy.py", line 64, in main
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
File "C:\Users\Willy Barales\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 789, in run
run_metadata_ptr)
File "C:\Users\Willy Barales\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 975, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (100, 10) for Tensor 'Placeholder_1:0', which has shape '(?, 62)'
Any ideas on how to change the dataset for this example?
Do I have to change something in the mnist.py file where .next_batch() is implemented?
As far as I know, EMNIST has the exact same format as MNIST.
Thanks in advance.
Info on the new dataset:
http://biometrics.nist.gov/cs_links/EMNIST/Readme.txt
All I have to do was to edit in the mnist.py file the part where the one hot vectors were created from labels, since those are the ones corresponding to batch_ys, thanks to the enlightment of Neijla.
def extract_labels(f, one_hot=False, num_classes=62)
Besides of course, changing the number of the classes in the model as I stated first in my question.
The code is as below and runs perfectly:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
xData = np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)
yTrainData = np.array([[1], [0], [1]], dtype=np.float32)
model = Sequential()
model.add(Dense(64, input_dim=3, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.fit(xData, yTrainData, epochs=10, batch_size=128, verbose=2)
xTestData = np.array([[2, 8, 1], [3, 1, 9]], dtype=np.float32)
resultAry = model.predict(xTestData)
print("Cal result: %s" % resultAry)
I can't work out the code in TensowFlow, something I've written is like this:
import tensorflow as tf
import numpy as np
xData = np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)
yTrainData = np.array([[1], [0], [1]], dtype=np.float32)
x = tf.placeholder(tf.float32)
yTrain = tf.placeholder(tf.float32)
w = tf.Variable(tf.ones([64]), dtype=tf.float32)
b = tf.Variable(tf.zeros([1]), dtype=tf.float32)
y = tf.nn.relu(w * x + b)
w1 = tf.Variable(tf.ones([3]), dtype=tf.float32)
b1 = tf.Variable(0, dtype=tf.float32)
y1 = tf.reduce_mean(tf.nn.sigmoid(w1 * y + b1))
loss = tf.abs(y1 - tf.reduce_mean(yTrain))
optimizer = tf.train.AdadeltaOptimizer(0.1)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(10):
for j in range(3):
result = sess.run([loss, y1, yTrain, x, w, b, train], feed_dict={x: xData[j], yTrain: yTrainData[j]})
if i % 10 == 0:
print("i: %d, j: %d, loss: %10.10f, y1: %f, yTrain: %s, x: %s" % (i, j, float(result[0]), float(result[1]), yTrainData[j], xData[j]))
result = sess.run([y1, loss], feed_dict={x: [1, 6, 0], yTrain: 0})
print(result)
But I will got the following error while running,
Traceback (most recent call last):
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1327, in _do_call
return fn(*args)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1306, in _run_fn
status, run_metadata)
File "C:\Python36\lib\contextlib.py", line 88, in __exit__
next(self.gen)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "testidc.py", line 36, in <module>
result = sess.run([loss, y1, yTrain, x, w, b, train], feed_dict={x: xData[j], yTrain: yTrainData[j]})
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1321, in _do_run
options, run_metadata)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
Caused by op 'mul', defined at:
File "testidc.py", line 15, in <module>
y = tf.nn.relu(w * x + b)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\variables.py", line 705, in _run_op
return getattr(ops.Tensor, operator)(a._AsTensor(), *args)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\math_ops.py", line 865, in binary_op_wrapper
return func(x, y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1088, in _mul_dispatch
return gen_math_ops._mul(x, y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 1449, in _mul
result = _op_def_lib.apply_op("Mul", x=x, y=y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 767, in apply_op
op_def=op_def)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
The main reason is the shape of W, must be the same as x in TensowFlow, but in Keras, the hidden Dense layer could have more nodes than the input(such as 64 in the example).
I need help for the equivalent TensorFlow code instead of the Keras one. Thanks.
This is an example that uses the tf.estimator.Estimator framework:
import tensorflow as tf
import numpy as np
# The model
def model(features):
dense = tf.layers.dense(inputs=features['x'], units=64, activation=tf.nn.relu)
dropout = tf.layers.dropout(dense, 0.2)
logits = tf.layers.dense(inputs=dropout, units=1, activation=tf.nn.sigmoid)
return logits
# Stuff needed to use the tf.estimator.Estimator framework
def model_fn(features, labels, mode):
logits = model(features)
predictions = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits)
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)
# Configure the training op
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.RMSPropOptimizer(learning_rate=1e-4)
train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step())
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
# Setting up input for the model
def input_fn(mode, batch_size):
# function that processes your input and returns two tensors "samples" and "labels"
# that the estimator will use to fetch input batches.
# See https://www.tensorflow.org/get_started/input_fn for how to write this function.
return samples, labels
# Using the model
def main():
# Create the Estimator
classifier = tf.estimator.Estimator(
model_fn=model_fn, model_dir='some_dir')
# Train the model
# NOTE: I use this to make it compatible with your example, but you should
# defnitely set up your own input_fn above
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)},
y=np.array([[1], [0], [1]]),
num_epochs=10,
batch_size=128,
shuffle=False)
classifier.train(
input_fn=train_input_fn,
steps=20000, # change as needed
)
# Predict on new data
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)},
num_epochs=1,
batch_size=1,
shuffle=False)
predictions_iterator = classifier.predict(
input_fn=predict_input_fn)
print('Predictions results:')
for pred in predictions_iterator:
print(pred)
There is quite bit going on here, so I'll try to explain the blocks one by one.
The model
The model is defined as a composition of tf.layers in a separate model function. This is done to keep the actual model_fn (which is required by the Estimator framework) independent of the model architecture.
The function takes a features parameter, which is the output of a call to input_fn (see below). In this example, since we're using tf.estimator.inputs.numpy_input_fn, features is a dictionary with item x:input_tensor. We use the input tensor as input for our model graph.
model_fn
This function is required by the framework and is used to generate a specification for your Estimator that is dependent on the mode the estimato is being used for. Typically, an estimator used for prediction will have less operations than when it's used for training (you don't have the loss, optimizer, etc). This function takes care of adding all that is necessary to your model graph for the three possible modes of operation (prediction, evaluation, training).
Breaking it down to logical pieces, we have:
Prediction: we only need the model graph, the predictions and the corresponding predicted labels (we could skip the labels, but having it here is handy).
Evaluation: we need everything for prediction plus: a loss function, some metric to evaluate on and optionally some summaries to visualize the metrics in Tensorboard.
Training: we need everything for evaluation plus: a training operation from an optimizer (in your sample, RMSProp)
input_fn
This is where we provide the input to our estimator.
Have a look at Building Input Functions with tf.estimator for a guide on how your custom input_fn should look like. For the example, we'll use the numpy_input_fn function from the framework.
Note that usually one input_fn handles all operation modes according to a mode parameter. Since we're using numpy_input_fn, we need two different instances of it for training and prediction to provide the data as needed.
main
Here we actually train and use the estimator.
Firstly, we get an Estimator instance with the model_fn we specified, then we call train() and wait for the training to be over.
Once that is done, calling predict() returns an iterable that you can use to get the prediction results for all the samples in the dataset you're predicting.
This is a couple of months old but it's worth noting that there is absolutely no reason to not use keras with tensorflow. It's even part of the tensorflow library now!
So if you want full control of your tensors but still want to use keras' layers, you can easily achieve that by using keras as-is:
x = tf.placeholder(tf.float32, [None, 1024])
y = keras.layers.Dense(512, activation='relu')(x)
For more on that, keras' creator made a pretty cool post about it.