Related
I am making my first steps in julia, and I would like to reproduce something I achieved with numpy.
I would like to write a new array-like type which is essentially an vector of elements of arbitrary type, and, to keep the example simple, an scalar attribute such as the sampling frequency fs.
I started with something like
type TimeSeries{T} <: DenseVector{T,}
data::Vector{T}
fs::Float64
end
Ideally, I would like:
1) all methods that take a Vector{T} as argument to take on TimeSeries{T}.
e.g.:
ts = TimeSeries([1,2,3,1,543,1,24,5], 12.01)
median(ts)
2) that indexing a TimeSeries always returns a TimeSeries:
ts[1:3]
3) built-in functions that return a Vector to return a TimeSeries:
ts * 2
ts + [1,2,3,1,543,1,24,5]
I have started by implementing size, getindex and so on, but I definitely do not see how it could be possible to match points 2 and 3.
numpy has a quite comprehensive way to doing this: http://docs.scipy.org/doc/numpy/user/basics.subclassing.html. R also seems to allow linking attributes attr()<- to arrays.
Do you have any idea about the best strategy to implement this sort of "array with attributes".
Maybe I'm not understanding, why is for say point 3 it not sufficient to do
(*)(ts::TimeSeries, n) = TimeSeries(ts.data*n, ts.fs)
(+)(ts::TimeSeries, n) = TimeSeries(ts.data+n, ts.fs)
As for point 2
Base.getindex(ts::TimeSeries, r::Range) = TimeSeries(ts.data[r], ts.fs)
Or are you asking for some easier way where you delegate all these operations to the internal vector? You can clever things like
for op in (:(+), :(*))
#eval $(op)(ts::TimeSeries, x) = TimeSeries($(op)(ts.data,x), ts.fs)
end
Most of the mainstream languages, including object-oriented programming (OOP) languages such as C#, Visual Basic, C++, and Java were designed to primarily support imperative (procedural) programming, whereas Haskell/gofer like languages are purely functional. Can anybody elaborate on what is the difference between these two ways of programming?
I know it depends on user requirements to choose the way of programming but why is it recommended to learn functional programming languages?
Here is the difference:
Imperative:
Start
Turn on your shoes size 9 1/2.
Make room in your pocket to keep an array[7] of keys.
Put the keys in the room for the keys in the pocket.
Enter garage.
Open garage.
Enter Car.
... and so on and on ...
Put the milk in the refrigerator.
Stop.
Declarative, whereof functional is a subcategory:
Milk is a healthy drink, unless you have problems digesting lactose.
Usually, one stores milk in a refrigerator.
A refrigerator is a box that keeps the things in it cool.
A store is a place where items are sold.
By "selling" we mean the exchange of things for money.
Also, the exchange of money for things is called "buying".
... and so on and on ...
Make sure we have milk in the refrigerator (when we need it - for lazy functional languages).
Summary: In imperative languages you tell the computer how to change bits, bytes and words in it's memory and in what order. In functional ones, we tell the computer what things, actions etc. are. For example, we say that the factorial of 0 is 1, and the factorial of every other natural number is the product of that number and the factorial of its predecessor. We don't say: To compute the factorial of n, reserve a memory region and store 1 there, then multiply the number in that memory region with the numbers 2 to n and store the result at the same place, and at the end, the memory region will contain the factorial.
Definition:
An imperative language uses a sequence of statements to determine how to reach a certain goal. These statements are said to change the state of the program as each one is executed in turn.
Examples:
Java is an imperative language. For example, a program can be created to add a series of numbers:
int total = 0;
int number1 = 5;
int number2 = 10;
int number3 = 15;
total = number1 + number2 + number3;
Each statement changes the state of the program, from assigning values to each variable to the final addition of those values. Using a sequence of five statements the program is explicitly told how to add the numbers 5, 10 and 15 together.
Functional languages:
The functional programming paradigm was explicitly created to support a pure functional approach to problem solving. Functional programming is a form of declarative programming.
Advantages of Pure Functions:
The primary reason to implement functional transformations as pure functions is that pure functions are composable: that is, self-contained and stateless. These characteristics bring a number of benefits, including the following:
Increased readability and maintainability. This is because each function is designed to accomplish a specific task given its arguments. The function does not rely on any external state.
Easier reiterative development. Because the code is easier to refactor, changes to design are often easier to implement. For example, suppose you write a complicated transformation, and then realize that some code is repeated several times in the transformation. If you refactor through a pure method, you can call your pure method at will without worrying about side effects.
Easier testing and debugging. Because pure functions can more easily be tested in isolation, you can write test code that calls the pure function with typical values, valid edge cases, and invalid edge cases.
For OOP People or
Imperative languages:
Object-oriented languages are good when you have a fixed set of operations on things and as your code evolves, you primarily add new things. This can be accomplished by adding new classes which implement existing methods and the existing classes are left alone.
Functional languages are good when you have a fixed set of things and as your code evolves, you primarily add new operations on existing things. This can be accomplished by adding new functions which compute with existing data types and the existing functions are left alone.
Cons:
It depends on the user requirements to choose the way of programming, so there is harm only when users don’t choose the proper way.
When evolution goes the wrong way, you have problems:
Adding a new operation to an object-oriented program may require editing many class definitions to add a new method
Adding a new kind of thing to a functional program may require editing many function definitions to add a new case.
Most modern languages are in varying degree both imperative and functional but to better understand functional programming, it will be best to take an example of pure functional language like Haskell in contrast of imperative code in not so functional language like java/C#. I believe it is always easy to explain by example, so below is one.
Functional programming: calculate factorial of n i.e n! i.e n x (n-1) x (n-2) x ...x 2 X 1
-- | Haskell comment goes like
-- | below 2 lines is code to calculate factorial and 3rd is it's execution
factorial 0 = 1
factorial n = n * factorial (n - 1)
factorial 3
-- | for brevity let's call factorial as f; And x => y shows order execution left to right
-- | above executes as := f(3) as 3 x f(2) => f(2) as 2 x f(1) => f(1) as 1 x f(0) => f(0) as 1
-- | 3 x (2 x (1 x (1)) = 6
Notice that Haskel allows function overloading to the level of argument value. Now below is example of imperative code in increasing degree of imperativeness:
//somewhat functional way
function factorial(n) {
if(n < 1) {
return 1;
}
return n * factorial(n-1);
}
factorial(3);
//somewhat more imperative way
function imperativeFactor(n) {
int f = 1;
for(int i = 1; i <= n; i++) {
f = f * i;
}
return f;
}
This read can be a good reference to understand that how imperative code focus more on how part, state of machine (i in for loop), order of execution, flow control.
The later example can be seen as java/C# lang code roughly and first part as limitation of the language itself in contrast of Haskell to overload the function by value (zero) and hence can be said it is not purist functional language, on the other hand you can say it support functional prog. to some extent.
Disclosure: none of the above code is tested/executed but hopefully should be good enough to convey the concept; also I would appreciate comments for any such correction :)
Functional Programming is a form of declarative programming, which describe the logic of computation and the order of execution is completely de-emphasized.
Problem: I want to change this creature from a horse to a giraffe.
Lengthen neck
Lengthen legs
Apply spots
Give the creature a black tongue
Remove horse tail
Each item can be run in any order to produce the same result.
Imperative Programming is procedural. State and order is important.
Problem: I want to park my car.
Note the initial state of the garage door
Stop car in driveway
If the garage door is closed, open garage door, remember new state; otherwise continue
Pull car into garage
Close garage door
Each step must be done in order to arrive at desired result. Pulling into the garage while the garage door is closed would result in a broken garage door.
//The IMPERATIVE way
int a = ...
int b = ...
int c = 0; //1. there is mutable data
c = a+b; //2. statements (our +, our =) are used to update existing data (variable c)
An imperative program = sequence of statements that change existing data.
Focus on WHAT = our mutating data (modifiable values aka variables).
To chain imperative statements = use procedures (and/or oop).
//The FUNCTIONAL way
const int a = ... //data is always immutable
const int b = ... //data is always immutable
//1. declare pure functions; we use statements to create "new" data (the result of our +), but nothing is ever "changed"
int add(x, y)
{
return x+y;
}
//2. usage = call functions to get new data
const int c = add(a,b); //c can only be assigned (=) once (const)
A functional program = a list of functions "explaining" how new data can be obtained.
Focus on HOW = our function add.
To chain functional "statements" = use function composition.
These fundamental distinctions have deep implications.
Serious software has a lot of data and a lot of code.
So same data (variable) is used in multiple parts of the code.
A. In an imperative program, the mutability of this (shared) data causes issues
code is hard to understand/maintain (since data can be modified in different locations/ways/moments)
parallelizing code is hard (only one thread can mutate a memory location at the time) which means mutating accesses to same variable have to be serialized = developer must write additional code to enforce this serialized access to shared resources, typically via locks/semaphores
As an advantage: data is really modified in place, less need to copy. (some performance gains)
B. On the other hand, functional code uses immutable data which does not have such issues. Data is readonly so there are no race conditions. Code can be easily parallelized. Results can be cached. Much easier to understand.
As a disadvantage: data is copied a lot in order to get "modifications".
See also: https://en.wikipedia.org/wiki/Referential_transparency
Imperative programming style was practiced in web development from 2005 all the way to 2013.
With imperative programming, we wrote out code that listed exactly what our application should do, step by step.
The functional programming style produces abstraction through clever ways of combining functions.
There is mention of declarative programming in the answers and regarding that I will say that declarative programming lists out some rules that we are to follow. We then provide what we refer to as some initial state to our application and we let those rules kind of define how the application behaves.
Now, these quick descriptions probably don’t make a lot of sense, so lets walk through the differences between imperative and declarative programming by walking through an analogy.
Imagine that we are not building software, but instead we bake pies for a living. Perhaps we are bad bakers and don’t know how to bake a delicious pie the way we should.
So our boss gives us a list of directions, what we know as a recipe.
The recipe will tell us how to make a pie. One recipe is written in an imperative style like so:
Mix 1 cup of flour
Add 1 egg
Add 1 cup of sugar
Pour the mixture into a pan
Put the pan in the oven for 30 minutes and 350 degrees F.
The declarative recipe would do the following:
1 cup of flour, 1 egg, 1 cup of sugar - initial State
Rules
If everything mixed, place in pan.
If everything unmixed, place in bowl.
If everything in pan, place in oven.
So imperative approaches are characterized by step by step approaches. You start with step one and go to step 2 and so on.
You eventually end up with some end product. So making this pie, we take these ingredients mix them, put it in a pan and in the oven and you got your end product.
In a declarative world, its different.In the declarative recipe we would separate our recipe into two separate parts, start with one part that lists the initial state of the recipe, like the variables. So our variables here are the quantities of our ingredients and their type.
We take the initial state or initial ingredients and apply some rules to them.
So we take the initial state and pass them through these rules over and over again until we get a ready to eat rhubarb strawberry pie or whatever.
So in a declarative approach, we have to know how to properly structure these rules.
So the rules we might want to examine our ingredients or state, if mixed, put them in a pan.
With our initial state, that doesn’t match because we haven’t yet mixed our ingredients.
So rule 2 says, if they not mixed then mix them in a bowl. Okay yeah this rule applies.
Now we have a bowl of mixed ingredients as our state.
Now we apply that new state to our rules again.
So rule 1 says if ingredients are mixed place them in a pan, okay yeah now rule 1 does apply, lets do it.
Now we have this new state where the ingredients are mixed and in a pan. Rule 1 is no longer relevant, rule 2 does not apply.
Rule 3 says if the ingredients are in a pan, place them in the oven, great that rule is what applies to this new state, lets do it.
And we end up with a delicious hot apple pie or whatever.
Now, if you are like me, you may be thinking, why are we not still doing imperative programming. This makes sense.
Well, for simple flows yes, but most web applications have more complex flows that cannot be properly captured by imperative programming design.
In a declarative approach, we may have some initial ingredients or initial state like textInput=“”, a single variable.
Maybe text input starts off as an empty string.
We take this initial state and apply it to a set of rules defined in your application.
If a user enters text, update text input. Well, right now that doesn’t apply.
If template is rendered, calculate the widget.
If textInput is updated, re render the template.
Well, none of this applies so the program will just wait around for an event to happen.
So at some point a user updates the text input and then we might apply rule number 1.
We may update that to “abcd”
So we just updated our text and textInput updates, rule number 2 does not apply, rule number 3 says if text input is update, which just occurred, then re render the template and then we go back to rule 2 thats says if template is rendered, calculate the widget, okay lets calculate the widget.
In general, as programmers, we want to strive for more declarative programming designs.
Imperative seems more clear and obvious, but a declarative approach scales very nicely for larger applications.
I think it's possible to express functional programming in an imperative fashion:
Using a lot of state check of objects and if... else/ switch statements
Some timeout/ wait mechanism to take care of asynchornousness
There are huge problems with such approach:
Rules/ procedures are repeated
Statefulness leaves chances for side-effects/ mistakes
Functional programming, treating functions/ methods like objects and embracing statelessness, was born to solve those problems I believe.
Example of usages: frontend applications like Android, iOS or web apps' logics incl. communication with backend.
Other challenges when simulating functional programming with imperative/ procedural code:
Race condition
Complex combination and sequence of events. For example, user tries to send money in a banking app. Step 1) Do all of the following in parallel, only proceed if all is good a) Check if user is still good (fraud, AML) b) check if user has enough balance c) Check if recipient is valid and good (fraud, AML) etc. Step 2) perform the transfer operation Step 3) Show update on user's balance and/ or some kind of tracking. With RxJava for example, the code is concise and sensible. Without it, I can imagine there'd be a lot of code, messy and error prone code
I also believe that at the end of the day, functional code will get translated into assembly or machine code which is imperative/ procedural by the compilers. However, unless you write assembly, as humans writing code with high level/ human-readable language, functional programming is the more appropriate way of expression for the listed scenarios
There seem to be many opinions about what functional programs and what imperative programs are.
I think functional programs can most easily be described as "lazy evaluation" oriented. Instead of having a program counter iterate through instructions, the language by design takes a recursive approach.
In a functional language, the evaluation of a function would start at the return statement and backtrack, until it eventually reaches a value. This has far reaching consequences with regards to the language syntax.
Imperative: Shipping the computer around
Below, I've tried to illustrate it by using a post office analogy. The imperative language would be mailing the computer around to different algorithms, and then have the computer returned with a result.
Functional: Shipping recipes around
The functional language would be sending recipes around, and when you need a result - the computer would start processing the recipes.
This way, you ensure that you don't waste too many CPU cycles doing work that is never used to calculate the result.
When you call a function in a functional language, the return value is a recipe that is built up of recipes which in turn is built of recipes. These recipes are actually what's known as closures.
// helper function, to illustrate the point
function unwrap(val) {
while (typeof val === "function") val = val();
return val;
}
function inc(val) {
return function() { unwrap(val) + 1 };
}
function dec(val) {
return function() { unwrap(val) - 1 };
}
function add(val1, val2) {
return function() { unwrap(val1) + unwrap(val2) }
}
// lets "calculate" something
let thirteen = inc(inc(inc(10)))
let twentyFive = dec(add(thirteen, thirteen))
// MAGIC! The computer still has not calculated anything.
// 'thirteen' is simply a recipe that will provide us with the value 13
// lets compose a new function
let doubler = function(val) {
return add(val, val);
}
// more modern syntax, but it's the same:
let alternativeDoubler = (val) => add(val, val)
// another function
let doublerMinusOne = (val) => dec(add(val, val));
// Will this be calculating anything?
let twentyFive = doubler(thirteen)
// no, nothing has been calculated. If we need the value, we have to unwrap it:
console.log(unwrap(thirteen)); // 26
The unwrap function will evaluate all the functions to the point of having a scalar value.
Language Design Consequences
Some nice features in imperative languages, are impossible in functional languages. For example the value++ expression, which in functional languages would be difficult to evaluate. Functional languages make constraints on how the syntax must be, because of the way they are evaluated.
On the other hand, with imperative languages can borrow great ideas from functional languages and become hybrids.
Functional languages have great difficulty with unary operators like for example ++ to increment a value. The reason for this difficulty is not obvious, unless you understand that functional languages are evaluated "in reverse".
Implementing a unary operator would have to be implemented something like this:
let value = 10;
function increment_operator(value) {
return function() {
unwrap(value) + 1;
}
}
value++ // would "under the hood" become value = increment_operator(value)
Note that the unwrap function I used above, is because javascript is not a functional language, so when needed we have to manually unwrap the value.
It is now apparent that applying increment a thousand times would cause us to wrap the value with 10000 closures, which is worthless.
The more obvious approach, is to actually directly change the value in place - but voila: you have introduced modifiable values a.k.a mutable values which makes the language imperative - or actually a hybrid.
Under the hood, it boils down to two different approaches to come up with an output when provided with an input.
Below, I'll try to make an illustration of a city with the following items:
The Computer
Your Home
The Fibonaccis
Imperative Languages
Task: Calculate the 3rd fibonacci number.
Steps:
Put The Computer into a box and mark it with a sticky note:
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
undefined
and send off the computer.
The Fibonaccis will upon receiving the box do as they always do:
Is the parameter < 2?
Yes: Change the sticky note, and return the computer to the post office:
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
0 or 1 (returning the parameter)
and return to sender.
Otherwise:
Put a new sticky note on top of the old one:
Field
Value
Mail Address
The Fibonaccis
Return Address
Otherwise, step 2, c/oThe Fibonaccis
Parameters
2 (passing parameter-1)
Return Value
undefined
and send it.
Take off the returned sticky note. Put a new sticky note on top of the initial one and send The Computer again:
Field
Value
Mail Address
The Fibonaccis
Return Address
Otherwise, done, c/o The Fibonaccis
Parameters
2 (passing parameter-2)
Return Value
undefined
By now, we should have the initial sticky note from the requester, and two used sticky notes, each having their Return Value field filled. We summarize the return values and put it in the Return Value field of the final sticky note.
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
2 (returnValue1 + returnValue2)
and return to sender.
As you can imagine, quite a lot of work starts immediately after you send your computer off to the functions you call.
The entire programming logic is recursive, but in truth the algorithm happens sequentially as the computer moves from algorithm to algorithm with the help of a stack of sticky notes.
Functional Languages
Task: Calculate the 3rd fibonacci number. Steps:
Write the following down on a sticky note:
Field
Value
Instructions
The Fibonaccis
Parameters
3
That's essentially it. That sticky note now represents the computation result of fib(3).
We have attached the parameter 3 to the recipe named The Fibonaccis. The computer does not have to perform any calculations, unless somebody needs the scalar value.
Functional Javascript Example
I've been working on designing a programming language named Charm, and this is how fibonacci would look in that language.
fib: (n) => if (
n < 2 // test
n // when true
fib(n-1) + fib(n-2) // when false
)
print(fib(4));
This code can be compiled both into imperative and functional "bytecode".
The imperative javascript version would be:
let fib = (n) =>
n < 2 ?
n :
fib(n-1) + fib(n-2);
The HALF functional javascript version would be:
let fib = (n) => () =>
n < 2 ?
n :
fib(n-1) + fib(n-2);
The PURE functional javascript version would be much more involved, because javascript doesn't have functional equivalents.
let unwrap = ($) =>
typeof $ !== "function" ? $ : unwrap($());
let $if = ($test, $whenTrue, $whenFalse) => () =>
unwrap($test) ? $whenTrue : $whenFalse;
let $lessThen = (a, b) => () =>
unwrap(a) < unwrap(b);
let $add = ($value, $amount) => () =>
unwrap($value) + unwrap($amount);
let $sub = ($value, $amount) => () =>
unwrap($value) - unwrap($amount);
let $fib = ($n) => () =>
$if(
$lessThen($n, 2),
$n,
$add( $fib( $sub($n, 1) ), $fib( $sub($n, 2) ) )
);
I'll manually "compile" it into javascript code:
"use strict";
// Library of functions:
/**
* Function that resolves the output of a function.
*/
let $$ = (val) => {
while (typeof val === "function") {
val = val();
}
return val;
}
/**
* Functional if
*
* The $ suffix is a convention I use to show that it is "functional"
* style, and I need to use $$() to "unwrap" the value when I need it.
*/
let if$ = (test, whenTrue, otherwise) => () =>
$$(test) ? whenTrue : otherwise;
/**
* Functional lt (less then)
*/
let lt$ = (leftSide, rightSide) => () =>
$$(leftSide) < $$(rightSide)
/**
* Functional add (+)
*/
let add$ = (leftSide, rightSide) => () =>
$$(leftSide) + $$(rightSide)
// My hand compiled Charm script:
/**
* Functional fib compiled
*/
let fib$ = (n) => if$( // fib: (n) => if(
lt$(n, 2), // n < 2
() => n, // n
() => add$(fib$(n-2), fib$(n-1)) // fib(n-1) + fib(n-2)
) // )
// This takes a microsecond or so, because nothing is calculated
console.log(fib$(30));
// When you need the value, just unwrap it with $$( fib$(30) )
console.log( $$( fib$(5) ))
// The only problem that makes this not truly functional, is that
console.log(fib$(5) === fib$(5)) // is false, while it should be true
// but that should be solveable
https://jsfiddle.net/819Lgwtz/42/
I know this question is older and others already explained it well, I would like to give an example problem which explains the same in simple terms.
Problem: Writing the 1's table.
Solution: -
By Imperative style: =>
1*1=1
1*2=2
1*3=3
.
.
.
1*n=n
By Functional style: =>
1
2
3
.
.
.
n
Explanation in Imperative style we write the instructions more explicitly and which can be called as in more simplified manner.
Where as in Functional style, things which are self-explanatory will be ignored.
I am trying to use SmallCheck to test a Haskell program, but I cannot understand how to use the library to test my own data types. Apparently, I need to use the Test.SmallCheck.Series. However, I find the documentation for it extremely confusing. I am interested in both cookbook-style solutions and an understandable explanation of the logical (monadic?) structure. Here are some questions I have (all related):
If I have a data type data Person = SnowWhite | Dwarf Integer, how do I explain to smallCheck that the valid values are Dwarf 1 through Dwarf 7 (or SnowWhite)? What if I have a complicated FairyTale data structure and a constructor makeTale :: [Person] -> FairyTale, and I want smallCheck to make FairyTale-s from lists of Person-s using the constructor?
I managed to make quickCheck work like this without getting my hands too dirty by using judicious applications of Control.Monad.liftM to functions like makeTale. I couldn't figure out a way to do this with smallCheck (please explain it to me!).
What is the relationship between the types Serial, Series, etc.?
(optional) What is the point of coSeries? How do I use the Positive type from SmallCheck.Series?
(optional) Any elucidation of what is the logic behind what should be a monadic expression, and what is just a regular function, in the context of smallCheck, would be appreciated.
If there is there any intro/tutorial to using smallCheck, I'd appreciate a link. Thank you very much!
UPDATE: I should add that the most useful and readable documentation I found for smallCheck is this paper (PDF). I could not find the answer to my questions there on the first look; it is more of a persuasive advertisement than a tutorial.
UPDATE 2: I moved my question about the weird Identity that shows up in the type of Test.SmallCheck.list and other places to a separate question.
NOTE: This answer describes pre-1.0 versions of SmallCheck. See this blog post for the important differences between SmallCheck 0.6 and 1.0.
SmallCheck is like QuickCheck in that it tests a property over some part of the space of possible types. The difference is that it tries to exhaustively enumerate a series all of the "small" values instead of an arbitrary subset of smallish values.
As I hinted, SmallCheck's Serial is like QuickCheck's Arbitrary.
Now Serial is pretty simple: a Serial type a has a way (series) to generate a Series type which is just a function from Depth -> [a]. Or, to unpack that, Serial objects are objects we know how to enumerate some "small" values of. We are also given a Depth parameter which controls how many small values we should generate, but let's ignore it for a minute.
instance Serial Bool where series _ = [False, True]
instance Serial Char where series _ = "abcdefghijklmnopqrstuvwxyz"
instance Serial a => Serial (Maybe a) where
series d = Nothing : map Just (series d)
In these cases we're doing nothing more than ignoring the Depth parameter and then enumerating "all" possible values for each type. We can even do this automatically for some types
instance (Enum a, Bounded a) => Serial a where series _ = [minBound .. maxBound]
This is a really simple way of testing properties exhaustively—literally test every single possible input! Obviously there are at least two major pitfalls, though: (1) infinite data types will lead to infinite loops when testing and (2) nested types lead to exponentially larger spaces of examples to look through. In both cases, SmallCheck gets really large really quickly.
So that's the point of the Depth parameter—it lets the system ask us to keep our Series small. From the documentation, Depth is the
Maximum depth of generated test values
For data values, it is the depth of nested constructor applications.
For functional values, it is both the depth of nested case analysis and the depth of results.
so let's rework our examples to keep them Small.
instance Serial Bool where
series 0 = []
series 1 = [False]
series _ = [False, True]
instance Serial Char where
series d = take d "abcdefghijklmnopqrstuvwxyz"
instance Serial a => Serial (Maybe a) where
-- we shrink d by one since we're adding Nothing
series d = Nothing : map Just (series (d-1))
instance (Enum a, Bounded a) => Serial a where series d = take d [minBound .. maxBound]
Much better.
So what's coseries? Like coarbitrary in the Arbitrary typeclass of QuickCheck, it lets us build a series of "small" functions. Note that we're writing the instance over the input type---the result type is handed to us in another Serial argument (that I'm below calling results).
instance Serial Bool where
coseries results d = [\cond -> if cond then r1 else r2 |
r1 <- results d
r2 <- results d]
these take a little more ingenuity to write and I'll actually refer you to use the alts methods which I'll describe briefly below.
So how can we make some Series of Persons? This part is easy
instance Series Person where
series d = SnowWhite : take (d-1) (map Dwarf [1..7])
...
But our coseries function needs to generate every possible function from Persons to something else. This can be done using the altsN series of functions provided by SmallCheck. Here's one way to write it
coseries results d = [\person ->
case person of
SnowWhite -> f 0
Dwarf n -> f n
| f <- alts1 results d ]
The basic idea is that altsN results generates a Series of N-ary function from N values with Serial instances to the Serial instance of Results. So we use it to create a function from [0..7], a previously defined Serial value, to whatever we need, then we map our Persons to numbers and pass 'em in.
So now that we have a Serial instance for Person, we can use it to build more complex nested Serial instances. For "instance", if FairyTale is a list of Persons, we can use the Serial a => Serial [a] instance alongside our Serial Person instance to easily create a Serial FairyTale:
instance Serial FairyTale where
series = map makeFairyTale . series
coseries results = map (makeFairyTale .) . coseries results
(the (makeFairyTale .) composes makeFairyTale with each function coseries generates, which is a little confusing)
If I have a data type data Person = SnowWhite | Dwarf Integer, how do I explain to smallCheck that the valid values are Dwarf 1 through Dwarf 7 (or SnowWhite)?
First of all, you need to decide which values you want to generate for each depth. There's no single right answer here, it depends on how fine-grained you want your search space to be.
Here are just two possible options:
people d = SnowWhite : map Dwarf [1..7] (doesn't depend on the depth)
people d = take d $ SnowWhite : map Dwarf [1..7] (each unit of depth increases the search space by one element)
After you've decided on that, your Serial instance is as simple as
instance Serial m Person where
series = generate people
We left m polymorphic here as we don't require any specific structure of the underlying monad.
What if I have a complicated FairyTale data structure and a constructor makeTale :: [Person] -> FairyTale, and I want smallCheck to make FairyTale-s from lists of Person-s using the constructor?
Use cons1:
instance Serial m FairyTale where
series = cons1 makeTale
What is the relationship between the types Serial, Series, etc.?
Serial is a type class; Series is a type. You can have multiple Series of the same type — they correspond to different ways to enumerate values of that type. However, it may be arduous to specify for each value how it should be generated. The Serial class lets us specify a good default for generating values of a particular type.
The definition of Serial is
class Monad m => Serial m a where
series :: Series m a
So all it does is assigning a particular Series m a to a given combination of m and a.
What is the point of coseries?
It is needed to generate values of functional types.
How do I use the Positive type from SmallCheck.Series?
For example, like this:
> smallCheck 10 $ \n -> n^3 >= (n :: Integer)
Failed test no. 5.
there exists -2 such that
condition is false
> smallCheck 10 $ \(Positive n) -> n^3 >= (n :: Integer)
Completed 10 tests without failure.
Any elucidation of what is the logic behind what should be a monadic expression, and what is just a regular function, in the context of smallCheck, would be appreciated.
When you are writing a Serial instance (or any Series expression), you work in the Series m monad.
When you are writing tests, you work with simple functions that return Bool or Property m.
While I think that #tel's answer is an excellent explanation (and I wish smallCheck actually worked the way he describes), the code he provides does not work for me (with smallCheck version 1). I managed to get the following to work...
UPDATE / WARNING: The code below is wrong for a rather subtle reason. For the corrected version, and details, please see this answer to the question mentioned below. The short version is that instead of instance Serial Identity Person one must write instance (Monad m) => Series m Person.
... but I find the use of Control.Monad.Identity and all the compiler flags bizarre, and I have asked a separate question about that.
Note also that while Series Person (or actually Series Identity Person) is not actually exactly the same as functions Depth -> [Person] (see #tel's answer), the function generate :: Depth -> [a] -> Series m a converts between them.
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, FlexibleContexts, UndecidableInstances #-}
import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Monad.Identity
data Person = SnowWhite | Dwarf Int
instance Serial Identity Person where
series = generate (\d -> SnowWhite : take (d-1) (map Dwarf [1..7]))
This test is failing :
var hashCode = new
{
CustomerId = 3354,
ServiceId = 3,
CmsThematicId = (int?)605,
StartDate = (DateTime?)new DateTime(2013, 1, 5),
EndDate = (DateTime?)new DateTime(2013, 1, 6)
}.GetHashCode();
var hashCode2 = new
{
CustomerId = 1210,
ServiceId = 3,
CmsThematicId = (int?)591,
StartDate = (DateTime?)new DateTime(2013, 3, 31),
EndDate = (DateTime?)new DateTime(2013, 4, 1)
}.GetHashCode();
Assert.AreNotEqual(hashCode, hashCode2);
Can you tell me why ?
It's kinda amazing you found this coincidence.
Anonymous classes have a generated GetHashCode() method that generates a hash code by combining the hash codes of all properties.
The calculation is basically this:
public override int GetHashCode()
{
return -1521134295 *
( -1521134295 *
( -1521134295 *
( -1521134295 *
( -1521134295 *
1170354300 +
CustomerId.GetHashCode()) +
ServiceId.GetHashCode()) +
CmsThematicId.GetHashCode()) +
StartDate.GetHashCode()) +
EndDate.GetHashCode();
}
If you change any of the values of any of the fields, the hash code does change. The fact that you found two different sets of values that happen to get the same hash codes is a coincidence.
Note that hash codes are not necessarily unique. It's impossible to say hash codes would always be unique since there can be more objects than hash codes (although that is a lot of objects). Good hash codes provide a random distribution of values.
NOTE: The above is from .NET 4. Different versions of .NET may different and Mono differs.
If you want to actually compare two objects for equality then use .Equals(). For anonymous objects it compares each field. An even better option is to use an NUnit constraint that compares each field and reports back which field differs. I posted a constraint here:
https://stackoverflow.com/a/2046566/118703
Your test is not valid.
Because hash codes are not guaranteed to be unique (see other answers for a good explanation), you should not test for uniqueness of hash codes.
When writing your own GetHashCode() method, it is a good idea to test for even distribution of random input, just not for uniqueness. Just make sure that you use enough random input to get a good test.
The MSDN spec on GetHashCode specifically states:
For the best performance, a hash function must generate a random
distribution for all input.
This is all relative, of course. A GetHashCode() method that is being used to put 100 objects in a dictionary doesn't need to be nearly as random as a GetHashCode() that puts 10,000,000 objects in a dictionary.
Did you run into this when processing a fairly large amount of data?
Welcome to the wonderful world of hash codes. A hash code is not a "unique identifier." It can't be. There is an essentially infinite number of possible different instances of that anonymous type, but only 2^32 possible hash codes. So it's guaranteed that if you create enough of those objects, you're going to see some duplicates. In fact, if you generate 70,000 of those objects randomly, the odds are better than 50% that two of them will have the same hash code.
See Birthdays, Random Numbers, and Hash Codes, and the linked Wikipedia article for more info.
As for why some people didn't see a duplicate and others did, it's likely that they ran the program on different versions of .NET. The algorithm for generating hash codes is not guaranteed to remain the same across versions or platforms:
The GetHashCode method for an object must consistently return the same
hash code as long as there is no modification to the object state that
determines the return value of the object's Equals method. Note that
this is true only for the current execution of an application, and
that a different hash code can be returned if the application is run
again.
Jim suggested me (in the chat room) to store my parameters so when i display my parameters, select the not used ones, then when someone registers I flag it as used. But it's a big PITA to generate all the parameters.
So my solution is to build a int64 hashcode like this
const long i = -1521134295;
return -i * (-i * (-i * (-i * -117147284 + customerId.GetHashCode()) + serviceId.GetHashCode()) + cmsThematicId.GetHashCode()) + startDate.GetHashCode();
I removed the end date because Its value was depending on serviceId and startDate so I shouldn't have add this to the hashcode in the firstplace.
I copy/pasted it from a decompilation of the generated class. I got not colision if I do a test with 300 000 differents combinations.
I have been programming for alot of time. Generally i program in some languages like PHP, ASP.net, Java, JavaScript and others. In all languages i have to use alot of if else statments . Like if value= 10 then ... if i review my code then i find alot of if conditions. So i would like to minimise them but how not sure.
one point was using classes somewhat minimised but still they are more...
like task, cat, sec and type:
if task = 'add' then
if cat = "animal" then
if sec = "man" then
if type = "male" then
'do the following stuffs
else
'do the following stuffs
end if
elseif sec = "horse" then
if type = "run"
'do the following stuffs
else
'do the following stuffs
end if
elseif....
end if
elseif cat = "plant" then
if sec = "land" then
if type="tree" then
'do the following stuffs
elseif type = "grass" then..
'do the following stuffs
elseif...
end if
elseif sec = "water" then
...
...
...
more n more continue n continue
so wonder how can i minimise them and write some efficient codes?
Sorry to inform lately that there may be alot of values for task, cat, sec, and type. My if statements are going nested n nested.
More explanatory my code also looks like same as :
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx
Many if..else statements is often a symptom the Polymorphism is not being used.
It's called 'Arrow Antipattern'
Some of the methods of dealing with it are described here: http://c2.com/cgi/wiki?ArrowAntiPattern
One of the ways you migt consider, is to refactor code in nested levels to separate functions like
if cat = "animal" then
functionForAnimal();
elseif cat = "plant" then
functionForPlant();
elseif...
function functionForAnimal()
if sec = "man" then
functionForMan();
elseif sec = "horse" then
functionForHorse();
elseif...
etc...
This splits code into smaller fragments which are easier to maintain, and possibly reusable.
Assuming you're always doing equality comparisons, and comparing all four fields, a simple data-driven approach is quite practical. All you need to do is construct a map from (task, cat, sec, type) to a function to call:
handlers = {
('add', 'animal', 'man', 'male'): add_man_func,
('add', 'animal', 'horse', 'run'): run_horse_func,
# ...
}
handler = handlers[(task, cat, sec, type)]
handler(some_args)
Polymorphism might be useful when you have different implementations but the task is conceptually the same. Sometimes it's hard to find a natural class structure, and approaches like the state pattern or the strategy pattern might be more appropriate.
You described a matrix with 4 incoming parameters - task, cat, sec, type and one outgoing - stuff. So you have to code it someway.
For example, XML map and an XPath query, i.e. String.Format("task[#value={0}]/cat[#value={1}]/sec[#value={2}]/type[#value={3}]", "add", "animal", "man", "male") but this approach points to a data, not a method delegate.
Another way:
void DoStuffA() { }
void DoStuffB() { }
var arr = new[]
{
new { Task = "Add", Cat = "Animal", Sec = "Man", Type = "Male", Method = (Action)DoStuffA },
new { Task = "Add", Cat = "Plant", Sec = "Land", Type = "Tree", Method = (Action)DoStuffB },
// etc..
};
var action = arr.FirstOrDefault(i =>
i.Task == "Add" &&
i.Cat == "Animal" &&
i.Type == "Male").Method;
action();
Also you can use not anonymous members but declare a class, describe your variants in XML and deserialize them from XML to a number of your class instances.
I think there are some fundamental flaws in your design. I don't know what problem you are trying to solve with this code, but such code should be very rare in an object oriented language. Your code also seems a bit illogical to me, because, for example, the variable type means gender the first time it's used (male) and then it means an action (run). Have you noticed this?
Anyway, if you're indeed using Java (or anything with classes), what you need is abstraction. Next, move all logic you can to your objects -- don't handle it in one monstrous routine. Think this way: my objects know how to do their part.
Actually it's a bit difficult to give good advice in this situation, I suspect your problems have source on some high level in your application and this case code is only a symptom. Try to redesign your program to use object-oriented approach and perhaps a better solution will come to your mind as you go.
If you're not sure what polymorphism, abstraction and other OO terms mean, you will need to read up on this.
If choices for each of those variables are finite, then you can even use tricks like bit fields with OR operation.
Example:
// give each field a byte so that each can have 256 possible values
#define TASK_ADD 0x01
#define TASK_SUB 0x02
...
#define CAT_ANIMAL 0x01
...
#define SEC_BOY 0x03
#define SEC_MAN 0x04
...
#define TYPE_FEMALE 0x01
#define TYPE_MALE 0x02
...
if ((task << 24 | cat << 16 | sec << 8 | type) == 0x01010402) {
// do stuff
}
Somewhere you will need to check the conditions with if-elses, to make sure you do the right thing. You could create new subs if you don't want to cram one sub
Sub AddAnimalManMale()
If task = 'add' And cat = 'animal' And sec = 'man' And type = 'male' Then
'perform the add animal man male action'
End If
End Sub
Sub AddAnimalHorseRun()
If task = 'add' And cat = 'animal' And sec = 'horse' And type = 'run' Then
'perform the add animal horse run action'
End If
End Sub
then in your main sub
...
Call AddAnimalManMale()
Call AddAnimalHorseRun()
...
Breaking the code up is all what the game is about.
Historically you would do (and there had been good, or at least stable code, and still there is in all of these)
as you are doing it now, monolithic in huge functions, with lots of comments
split it into small well defined and well named functions
naming functions was tricky for complex stuff and also if you keep on passing references to big structures then objects were a natural thing to invent (however, once you go object way then it makes sense to do everything and through reusing the code object oriented patterns emerge... )
Recognizing the patterns is in a way similar to giving good names to functions (plus you get naturally useful methods thrown in, which can be huge win).