I'm wondering which of the following two methods would be more efficient, or if it doesn't actually matter which route you take as the overhead is minuscule.
Essentially, is it better to instantiate a class (for example, 'Db') that you know is going to be used often in a parent class and simply extend the parent class whenever you want to use 'Db', or is it better to instantiate 'Db' separately in the constructor of the classes you want to use it.
Obviously the best route to take in terms of avoiding duplicate code would be to instantiate it in a parent class but just out of curiosity I was wondering if anyone has any insight into how significant/insignificant the effect on the server is for these two routes.
Route 1:
// Parent
class template {
public function __construct() {
$this->db = new Db();
}
}
// Child
class login extends template {
public function __construct() {
// Has access to $this->db
}
}
Route 2:
class login {
public function __construct() {
$this->db = new Db();
}
}
Thanks in advance.
It shouldn't matter performance wise.
If you extend the template class, you still have to instantiate the child class, which in turn will call the constructor of the parent implicitly. This means that in both cases, the DB class will be instantiated. Even worse, the extended class will probably be a little bit slower because it has the added overhead of an extra function call (that of the parent construct method).
That being said I strongly recommend to read up on composition over inheritance. Parent child relations are there to enforce an "is a" relationship. If you start extending the same class simply for performance reasons, chances are you are going to shoot yourself in the foot later on. It is simply unexpected behavior for most programmers to have unrelated classes extend from the same parent.
Related
From the perspective of object-oriented best practices, where should I place a variable or method needed in some children of a parent class, but not others?
Ex.
Classes Button, Knob, Lever, and Switch inherit from parent class Device.
Button, Lever, and Switch need a boolean isOn, but Knob does not. Where would you define isOn?
Lever and Switch need a method Throw() that toggles isOn; Button uses isOn but does not use Throw() to handle it. Does this affect your placement of isOn, and where would you define the Throw() method?
The above is purely an example; let's assume that there are distinct properties of each child class that distinguish it and that there are commonalities that make it reasonable to use the inheritence model discussed.
When only a sub-set of sub-classes share functionality, this can be expressed with an interface that contains the methods in question, which is only implemented by the sub-classes that need them.
public interface OnOffable {
boolean isOn();
void toggleOnOff();
void turnOn(boolean is_on);
void turnOn();
void turnOff();
}
class Switch extends Device implements OnOffable...
If one or more of the functions is moderately complicated, you can create a static utility function that helps prevent redundant code. In this example, however, the "complicated-ness" is the need to keep the on-off state.
In this situation, you can create an OnOffableComposer which (my preference) does not implement OnOffable.
And actually, since this particular interface can be completely implemented (meaning it needs no protected or abstract function), it can actually be a "simple" implementation of it:
public class SimpleOnOffable implements OnOffable {
private boolean isOn;
public class OnOffableComposer(boolean is_on) {
turnOn(is_on);
}
public boolean isOn() {
return isOn;
}
public void turnOn(boolean is_on) {
isOn = is_on;
}
public void toggleOnOff() {
turnOn(!isOn());
}
public void turnOn() {
turnOn(true);
}
public void turnOff() {
turnOn(false);
}
}
Here's how it's used:
public class Switch extends Device implements OnOffable {
private final SimpleOnOffable smplOnOff;
public Switch(boolean is_on) {
smplOnOff = new SimpleOnOffable(is_on);
}
public boolean isOn() {
return smplOnOff.isOn();
}
public void turnOn(boolean is_on) {
smplOnOff.turnOn(is_on);
}
public void toggleOnOff() {
smplOnOff.toggleOnOff();
}
public void turnOn() {
smplOnOff.turnOn();
}
public void turnOff() {
smplOnOff.turnOff();
}
}
Although the composer is "simple", this all demonstrates the concept of choosing composition over inheritance. It allows for much more complicated designs than single inheritance allows.
It sounds like the wrong abstraction all around. At the very least, Knob doesn't belong with the others. I might inject a class between Device and the three closely-related devices. Perhaps something like BinaryDevice:
abstract class Device {}
abstract class BinaryDevice : Device {
abstract void Activate();
abstract void Deactivate();
}
class Switch : BinaryDevice {
void Activate() { // activate the switch }
void Deactivate() { // deactivate the switch }
}
// same for Lever, which honestly is really just a Switch with a different styling and may not even need to be a separate object
class Button : BinaryDevice {
void Activate() { // activate the button, then immediately call Deactivate() }
void Deactivate() { // deactivate the button }
}
Knob can also inherit from Device, but at this point there is no common functionality for a Device so it's not clear why that universal common base class is even necessary. As further functionality is added to the various devices there may indeed be common functionality to push up to the base class. Indeed, there are well established refactoring patterns for dealing with generalization like this.
With the classes above, I imagine there would be error handling for trying to invoke an action in an incorrect state. For example, it's difficult to imagine a scenario where a Button would need anybody to call Deactivate() on it, since it de-activates itself. (Though just as a real-life button can become stuck, so too can this one if the action it invokes hangs for some reason.) But in any event even the Activate() and Deactivate() on the other objects would still need to check state. You can't activate a switch that's already active, for example.
The point is, the clarity of an object model starts to make itself more apparent when terminology and real-world modeling is more carefully considered. A lot of times developers try to shoehorn terminology into a handful of common terms in order to maximize their use of things like inheritance, and unfortunately this often results in the wrong abstraction and a confused domain model.
Build your objects as they naturally exist, then look for patterns which can be abstracted into common functionality. Don't try to define the common functionality first and then force objects to fit that mold.
In general, I would say that if an element of a parent class is needed in some but not all of the children then an intermediate parent should be introduced.
When defining an inheritance hierarchy, it's a logical assumption that the children of a parent should share all properties of that common ancestor. This is akin to the way a biological taxonomy would work, and it helps to keep the code clean.
So let's have a look at the objects in your system (we'll use the "is a" relationship to help us figure out the inheritance hierarchy):
Button, Knob, Lever, and Switch
Each of these might indeed be called "Devices", but when we say "devices" most people will probably think of digital devices like phones or tablets. A better word for describing these objects might be "controls" because these objects help you to control things.
Are all objects Controls? Indeed they are, so every object will have Control as a parent in its inheritance hierarchy.
Do we need to further classify? Well your requirements are to have an on/off status, but it does not make sense for every control to have on/off status, but only some of them. So let's further divide these into Control and ToggleControl.
Is every Control a ToggleControl? No, so these are separate classes of objects.
Is every ToggleControl a Control? Yes, so ToggleControl can inherit from Control.
Are all objects properly classified and are all parent attributes shared by all children? Yes, so we're done building our inheritance hierarchy.
Our inheritance hierarchy thus looks like this:
Control (Code shared by all controls)
/ \
/ \
Knob ToggleControl (Code shared by all controls that can also be toggled - Adds isOn)
\
\
Button, Lever, Switch
Now, to the other part of your question:
Lever and Switch need a method Throw() that toggles isOn; Button uses isOn but does not use Throw() to handle it. Does this affect your placement of isOn, and where would you define the Throw() method?
Firstly, "throw" is a reserved word (at least in Java), so using method names that are similar to reserved words might cause confusion. The method might be better named "toggle()".
Button should (in fact it must) use toggle() to toggle it's isOn since it is a togglable control.
Hi I have a problem with the structure of my code, it somehow goes into Circular Dependency. Here is an explanation of how my code looks like:
I have a ProjectA contains BaseProcessor and BaseProcessor has a reference to a class called Structure in ProjectB. Inside BaseProcessor, there is an instance of Structure as a variable.
In projectB there are someother classes such as Pricing, Transaction etc.
Every class in ProjectB has a base class called BaseStructure i.e. Structure, Pricing and Transaction classes all inherited from BaseStructure.
Now in Pricing and Transaction classes, I want to call a method in BaseProcessor class from BaseStructure class which causing Circular Dependency.
What I have tried is:
Using Unity, but I didn't figure out how to make it work because I try to use function like:
unityContainer.ReferenceType(IBaseProcessor, BaseProcessor)
in BaseStructure then it will need a reference of BaseProcessor which also cause Circular Dependency.
And I've also tried creating an interface of IBaseProcessor and create a function(the function I want to call) declaration in this interface. And let both BaseProcessor and BaseStructure inherit this interface. But how can I call the function in Pricing and Transaction class without create an instance of BaseProcessor?
Can anyone please tell me how to resolve this problem other than using reflection?
Any help will be much appreciated. Thanks :)
You could use the lazy resolution:
public class Pricing {
private Lazy<BaseProcessor> proc;
public Pricing(Lazy<BaseProcessor> proc) {
this.proc = proc;
}
void Foo() {
this.proc.Value.DoSomethin();
}
}
Note that you haven't to register the Lazy because Unity will resolve it by BaseProcessor registration.
Your DI container can't help solving the circular reference, since it is the dependency structure of the application that prevents objects from being created. Even without a DI container, you can't construct your object graphs without some special 'tricks'.
Do note that in most cases cyclic dependency graphs are a sign of a design flaw in your application, so you might want to consider taking a very close look at your design and see if this can't be solved by extracting logic into separate classes.
But if this is not an option, there are basically two ways of resolving this cyclic dependency graph. Either you need to fallback to property injection, or need to postpone resolving the component with a factory, Func<T>, or like #onof proposed with a Lazy<T>.
Within these two flavors, there are a lot of possible ways to do this, for instance by falling back to property injection into your application (excuse my C#):
public class BaseStructure {
public BaseStructure(IDependency d1) { ... }
// Break the dependency cycle using a property
public IBaseProcessor Processor { get; set; }
}
This moves the IBaseProcessor dependency from the constructor to a property and allows you to set it after the graph is constructed. Here's an example of an object graph that is built manually:
var structure = new Structure(new SomeDependency());
var processor = new BaseProcessor(structure);
// Set the property after the graph has been constructed.
structure.Processor = processor;
A better option is to hide the property inside your Composition Root. This makes your application design cleaner, since you can keep using constructor injection. Example:
public class BaseStructure {
// vanilla constructor injection here
public BaseStructure(IDependency d1, IBaseProcessor processor) { ... }
}
// Defined inside your Composition Root.
private class CyclicDependencyBreakingProcessor : IBaseProcessor {
public IBaseProcessor WrappedProcessor { get; set; }
void IBaseProcessor.TheMethod() {
// forward the call to the real processor.
this.WrappedProcessor.TheMethod();
}
}
Now instead of injecting the BaseProcessor into your Structure, you inject the CyclicDependencyBreakingProcessor, which will be further initialized after the construction of the graph:
var cyclicBreaker = new CyclicDependencyBreakingProcessor();
var processor = new BaseProcessor(new Structure(new SomeDependency(), cyclicBreaker));
// Set the property after the graph has been constructed.
cyclicBreaker.WrappedProcessor = processor;
This is basically the same as before, but now the application stays oblivious from the fact that there is a cyclic dependency that needed to be broken.
Instead of using property injection, you can also use Lazy<T>, but just as with the property injection, it is best to hide this implementation detail inside your Composition Root, and don't let Lazy<T> values leak into your application, since this just adds noise to your application, which makes your code more complex and harder to test. Besides, the application shouldn't care that the dependency injection is delayed. Just as with Func<T> (and IEnumerable<T>), when injecting a Lazy<T> the dependency is defined with a particular implementation in mind and we're leaking implementation details. So it's better to do the following:
public class BaseStructure {
// vanilla constructor injection here
public BaseStructure(IDependency d1, IBaseProcessor processor) { ... }
}
// Defined inside your Composition Root.
public class CyclicDependencyBreakingProcessor : IBaseProcessor {
public CyclicDependencyBreakingBaseProcessor(Lazy<IBaseProcessor> processor) {...}
void IBaseProcessor.TheMethod() {
this.processor.Value.TheMethod();
}
}
With the following wiring:
IBaseProcessor value = null;
var cyclicBreaker = new CyclicDependencyBreakingProcessor(
new Lazy<IBaseProcessor>(() => value));
var processor = new BaseProcessor(new Structure(new SomeDependency(), cyclicBreaker));
// Set the value after the graph has been constructed.
value = processor;
Up until now I only showed how to build up the object graph manually. When doing this using a DI container, you usually want to let the DI container build up the complete graph for you, since this yields a more maintainable Composition Root. But this can make it a bit more tricky to break the cyclic dependencies. In most cases the trick is to register the component that you want to break with a caching lifestyle (basically anything else than transient). Per Web Request Lifestyle for instance. This allows you to get the same instance in a lazy fashion.
Using the last CyclicDependencyBreakingProcessor example, we can create the following Unity registration:
container.Register<BaseProcessor>(new PerRequestLifetimeManager());
container.RegisterType<IStructure, Structure>();
container.RegisterType<IDependency, SomeDependenc>();
container.Register<IBaseProcessor>(new InjectionFactory(c =>
new CyclicDependencyBreakingProcessor(
new Lazy<IBaseProcessor>(() => c.GetInstance<BaseProcessor>())));
I have a parent bean having one instance variable like below :
public Class ParentBean {
protected boolean show; // this variable will be used to show some UI component
public void action() {
// update show variable here
}
public boolean isShow() {
return show;
}
}
Is it a good design if I want to reuse the "show" variable in a child bean (to show other UI component specific to child bean ) as shown below :
public Class ChildBean extends ParentBean {
// override the action method from parent bean
public void action() {
// update show variable here
show = true /false;
}
}
In effect , show variable is being updated by "childBean" by overriding action() method.
Is this a good design practice ? Otherwise same thing has to be repeated in ChildBean to get this work done.
If you use the show variable for the same purpose in the subclass, as you seem to be doing in this example, then obviously you should reuse it, because otherwise you just end up writing the same code twice, which is contrary to the point of OOP.
In general, in OOP, it is common to override superclass methods in subclasses, as well as modifying superclass instance variables, as long as you know what the variable you are modifying is being used for (you don't want to be randomly changing instance variables in classes that you don't completely understand, or don't have access to the source of, because you don't want any unfortunate side effects), so when it's your own code, this is absolutely fine.
As a general guideline, if your options are either to copy and paste a massive hunk of code and use it unchanged, or subclass and use the superclass' instance variables or functions, it's better to subclass. Otherwise, you're missing out on the point of OOP.
Changing the value in subclass will not affect superclass variable
This is fine with respect to the design. When a subclass object is instantiated, it will have a different copy of variable. and If superclass object is instantiated it will have different copy.
It is. Having a protected variable means you are allowed to modify it into parent or children classes (remember every single instance of each class has its own property values). So, if you have some generic functionality which is valuable for all the children:
Parent class:
public void action(){
//update show variable here
show = true;
}
Appart from that, if you want to add some extra functionality in a specifical child:
Child class:
#Override
public void action(){
super.action();
//Extra functionality goes here
//You can also access parent's 'protected' fields
if (show){
System.out.println("Shown");
}
}
An example of the use:
Parent p = new Parent();
p.action();//Prints nothing
Child c = new Child();
p.action();//Prints 'shown'
I have a base class where all common functions are written. I many classes which override this functions by virtual keyword. Like,
public class Base
{
public virtual void sample()
{
..............
}
}
public class a : Base
{
public override sample()
{
}
}
public class implement
{
public void ToSample()
{
Base baseclass = new Base();
Switch(test)
{
case a: baseclass = a();
break;
case b: baseclass = b();
break;
}
baseclass.sample();
}
}
This perfect code for current situation but now I have more class to be assign in switch case. It is not good practice for adding huge amount of cases so I want something that automatically assign child class.
Is anybody know something to be implement ?
As stated in the comment, you can decouple the implementation by using dependency injection. Note however, that in some cases you have no choice but doing that kind of switch (e.g. when you need to create a class based on a text received in a socket). In such cases the important thing is to always keep the switch statement encapsulated in one method and make your objects rely on it (or, in other words, don't copy-and-paste it everywhere :)). The idea here is too keep your system isolated from a potentially harmful code. Of course that if you add a new class you will have to go and modify that method, however you will only have to do it in one time and in one specific place.
Another approach that I have seen (and sometimes used) is to build a mapping between values an classes. So, if your class-creation switch depends on an integer code, you basically create a mapping between codes and classes. What you are doing here is turning a "static" switch into a dynamic behavior, since you can change the mappings contents at any time and thus alter the way your program behaves. A typical implementation would be something like (sorry for the pseudocode, I'm not familiar with C#):
public class implement
{
public void ToSample()
{
class = this.mapping.valueForKey(test);
Base baseclass = new class();
baseclass.sample();
}
}
Note however that for this example to work you need reflection support, which varies according to the language you are using (again, sorry but I don't know the C# specifics).
Finally, you can also check the creational family of patterns for inspiration regarding object creation issues and some well known forms of solving them.
HTH
I have an application with several graphs and tables on it.
I worked fast and just made classes like Graph and Table that each contained a request object (pseudo-code):
class Graph {
private request;
public function setDateRange(dateRange) {
request.setDateRange(dateRange);
}
public function refresh() {
request.getData(function() {
//refresh the display
});
}
}
Upon a GUI event (say, someone changes the date range dropdown), I'd just call the setters on the Graph instance and then refresh it. Well, when I added other GUI elements like tables and whatnot, they all basically had similar methods (setDateRange and other things common to the request).
What are some more elegant OOP ways of doing this?
The application is very simple and I don't want to over-architect it, but I also don't want to have a bunch of classes with basically the same methods that are just routing to a request object. I also don't want to set up each GUI class as inheriting from the request class, but I'm open to any ideas really.
As you commented the methods are identical. In that case I would suggest the following approach.
abstract class AbstractGUIElement {
protected request;
public function setDateRange(dateRange) {
request.setDateRange(dateRange);
}
abstract function refresh();
}
Refreshing would probably be element specific so I have added it as an abstract method the inheriting types have to implement.
class Graph extends AbstractGUIElement {
public function refresh() {
// Graph specific refreshing
}
}