Question:I have Manager interface with managePeople method.
Waiter interface with takeOrder Method.
Dan is Waiter and Manager,Tom is only Waiter.
So in the question Dan implements both of them.
Tom implements only Waiter.What is neede to be in the main -> dan.takeOrder()/tom.managePeople()/tom.takeOrder() how do you fix this design?
so I have made Interface for Manaageable Way and anyone can add strategy for impl.
Another TakingOrder interface and it's impl so they will be 2 diffrenet implenations.(for tom and dan)
Now Waiter class will include member of TakingOrder impl.
and the same for ManageableWay.
Waiter and Manager extends User
Now I create worker that includes Listas member.But now if you want to user new Worker().takeOrder/managePeople I should use instance of and this becomes a mess
Tom cannot managePeople() because he doesn't implement Manager.
on the other hand, Tom and Dan can Takeorder() because they both implement Waiter.
You can use the inheritance and say that any manager can also function as a waiter If necessary.
interface Manager extends Waiter
Related
I am working on a project with a service, repository pattern. AService, ARepository, BService, BRepository. Now, however, it happens that A has a relation to B. So I have to shoot another query against the B database to merge both objects later. For example: give me all objects A and their relation to object B. Can I call the BRepository directly from the AService or should I better go via the BService? Is there a rule here according to cleanCode?
Sure, you can. Imagine situation, when user buy something in online shop. You would need many repositories:
public class OrderService
{
private IUserRepository _userRepository;
private IWareHouseRepository _wareHouseRepository;
OrderService(IUserRepository userRepository,
IWareHouseRepository wareHouseRepository)
{
_userRepository = userRepository;
_wareHouseRepository = wareHouseRepository;
}
}
I would prefer to call repository instead of service because repository is less specific. I mean calling another service ServiceB that contain desired repository can be dangerous as business logic can be added into existing service ServiceB which is not eligible for your ServiceA.
In addition, circular dependencies can be occured if we call service from another service. So try to use dependency injection. Moreover, try to program to interfaces, not implementations, I mean you can create interfaces for your service classes and use this interface from your client classes (pass the concrete implementation to the constructor).
Background
Suppose I am tasked with building a system in the domain of notification sending using Domain Driven Design (DDD). One of the key requirements of this system is that it needs to support various "types" of notifications, such as SMS, email, etc.
After several iterations on developing the domain model, I continue to land on having a Notification base class as an entity, with subclasses SMSNotification, EmailNotification, etc. as child classes (each being an entity as well).
Notification
public abstract class Notification extends Entity<UUID> {
//...fields...
public abstract void send();
}
SMSNotification
public class SMSNotification extends Notification {
public void send(){
//logic for sending the SMS notification using an infrastructure service.
}
}
EmailNotification
public class EmailNotification extends Notification {
public void send(){
//logic for sending the email notification using an infrastructure service.
}
}
Problem(s)
With this current design approach, each subclass of Notification is interacting with an infrastructure service, where the infrastructure is tasked with interfacing with some external system.
Eric Evans dedicates a little page space about this on page 107 in his book Domain-Driven Design when introducing the concept of domain services:
..., in most development systems, it is awkward to make a direct interface between a domain object and external resources. We can dress up such external services with a facade that takes inputs in terms of the model, ... but whatever intermediaries we may have, and even though they don't belong to us, those services are carrying out the domain responsibility...
If instead, I procure a SendNotificationService in my domain model using Evans' advice instead of having a send method on each subclass of Notification, I am not sure how I can avoid the need for knowing what type of notification was provided, so that the appropriate infrastructure action can be taken:
SendNotificationService (Domain Service)
public class SendNotificationService {
public void send(Notification notification){
//if notification is an SMS notification...
// utilize infrastructure services for SMS sending.
//if notification is an email notification...
// utilize infrastructure services for email sending.
//
//(╯°□°)╯︵ ┻━┻)
}
}
What am I missing here?
Object oriented design principles are pushing me in favor of having the model first suggested, with the Notification, SMSNotification, and EmailNotification classes. Implementing the send method on each subclass of Notification makes sense, as all notifications need to be sent (justifies its placement in Notification) and each "type" or subclass of Notification will have specialized behavior in how the notification is sent (justifies making send abstract in Notification). This approach also honors Open/Closed Principle (OCP), since the Notification class will be closed to modification, and as new notification types are supported, a new subclass of Notification can be created to extend functionality. Regardless, there seems to be consensus on not having entities interface with external services, as well as not having subclasses of entities at all in DDD.
If the behavior of sending notifications is removed from Notification, then where it is placed must be aware of the "type" of notification, and act accordingly, which I can only conceptualize as chain of if...else... statements, which directly contradicts OCP.
TLDR: If you need some infrastructure logic to be executed against your domain and you need some input to it from domain - don't build it in, just declare intentions with appropriate data/markers. You'll then process this declared intentions later, in infrastructure layer.
Do notifications of various kind differ in any way other that delivery mechanism? If not - there could be enough to use a Notification value object (or Entity, if your domain model requires so) with additional field (Enum, if the list is known, or some kind of marker) to store a delivery method name. Maybe, there could be numerous such methods per single notification instance.
Then you have a business logic - a domain service - to fire a notification. A domain service should only depend on domain vocabulary. E.g NotificationDeliveryMethodProvider.
In your adapters layer you can implement various delivery method providers to interact with infrastructure. And a factory to get providers according to a value in DeliveryMethod enum (or marker).
Basically, it's not an aggregate's responsibility to "send" itself of manipulate in any way. Its responsibility should be to maintain its state, execute state transitions in a consistent way and coordinate states of its enclosed entities/values. And fire events about its state changes.
In one of my projects I used the following subpackages under my domain package:
provides - interfaces of domain services provided to clients
cousumes - interfaces of upstream dependencies
businesslogic - implementation of domain services
values - value objects with code to enforce their invariants
...
Besides domain package there were also:
adapters package dealing with infrastructure
App object, where all interfaces were bound to implementations.
[There could also be] config package, but in my case it was very light.
These domain, adapters, App and config could be deployed as different jar-files with clear dependency structure, if you need to enforce it for somebody other.
I agree with you that the main responsibility of a Notification should be, that it can send itself. That is the whole reason it exists, so it's a good abstraction.
public interface Notification {
void send();
}
The implementations of this interface are the infrastructure services you are looking for. They will not (should not) be referenced directly by other "business" or "core" classes.
Note about making in an Entity: My own takeaway from reading the blue book is, that DDD is not about using Entity, Services, Aggregate Roots, and things like that. The main points are Ubiquitous Language, Contexts, how to work the Domain itself. Eric Evans himself says that this thinking can be applied to different paradigms. It does not have to always involve the same technical things.
Note about the "conventional" design from the other comment (#VoiceOfUnreason): In object-orientation at least, "holding state" is not a real responsibility. Responsibilities can only directly come from the Ubiquitous Language, in other words from the business. "Conventional" (i.e. procedural) design separates data and function, object-orientation does exactly the opposite. So be sure to decide which paradigm you are aiming for, then it may be easier to choose a solution.
After several iterations on developing the domain model, I continue to land on having a Notification base class as an entity, with subclasses SMSNotification, EmailNotification, etc. as child classes
That's probably an error.
public abstract class Notification extends Entity<UUID> {
public abstract void send();
}
That almost certainly is. You can make it work, if you twist enough, but you are going the wrong way around.
The responsibility of the entities in your domain model is the management of state. To also have the entity be responsible for the side effect of dispatching a message across your process boundary violates separation of concerns. So there should be a collaborator.
For Evans, as you will have noted, the collaboration takes the form of a domain service, that will itself collaborate with an infrastructure service to produce the desired result.
The most straight forward way to give the entity access to the domain service is to simply pass the domain service as an argument.
public class SMSNotification extends Notification {
public void send(SMSNotificationService sms) {
//logic for sending the SMS notification using an infrastructure service.
}
The SMSNotification supports a collaboration with an SMSNoticationService provider, and we make that explicit.
The interface you've offered here looks more like the Command Pattern. If you wanted to make that work, you would normally wire up the specific implementations in the constructor
public class SMSCommand extends NotificationCommand {
private final SMSNotificationService sms;
private final SMSNotification notification;
public final send() {
notification.send(sms);
}
}
There are some things you can do with generics (depending on your language choice) that make the parallels between these different services more apparent. For example
public abstract class Notification<SERVICE> extends Entity<UUID> {
public abstract void send(SERVICE service);
}
public class SMSNotification extends Notification<SMSNotificationService> {
public void send(SMSNotificationService service){
//logic for sending the SMS notification using an infrastructure service.
}
}
public class NotificationCommand<SERVICE> {
private final SERVICE service;
private final Notification<SERVICE> notification;
public final send() {
notification.send(service);
}
}
That's the main approach.
An alternative that sometimes fits is to use the poor man's pattern match. Instead of passing in the specific service needed by a particular type of entity, you pass them all in....
public abstract class Notification extends Entity<UUID> {
public abstract void send(SMSNotificationService sms, EmailNotificationService email, ....);
}
and then let each implementation choose precisely what it needs. I wouldn't expect this pattern to be a good choice here, but it's an occasionally useful club to have in the bag.
Another approach that you will sometimes see is to have the required services injected into the entity when it is constructed
SMSNotificationFactory {
private final SMSNotificationService sms;
SMSNotification create(...) {
return new SMSNotification(sms, ...);
}
}
Again, a good club to have in the bag, but not a good fit for this use case -- you can do it, but suddenly a lot of extra components need to know about the notification services to get them where they need to be.
What's best between notification.send(service) and service.send(notification)
Probably
notification.send(service)
using "Tell, don't ask" as the justification. You pass the collaborator to the domain entity, and it decides (a) whether or not to collaborate, (b) what state to pass to the domain service, and (c) what to do with any state that gets returned.
SMSNotification::send(SMSNotificationService service {
State currentState = this.getCurrentState();
{
Message m = computeMessageFrom(currentState);
service.sendMessage(m);
}
}
At the boundaries, applications are not object oriented; I suspect that as we move from the core of the domain toward the domain, we see entities give way to values give way to more primitive representations.
after reading a bit on pure domain models and the fact there shouldn't be any IO in there I'm not sure anymore
It is, in truth, a bit of a tangle. One of the motivations of domain services is to decouple the domain model from the IO -- all of the IO concerns are handled by the domain service implementation (or more likely, by an application/infrastructure service that the domain service collaborates with). As far as the entity is concerned, the method involved is just a function.
An alternative approach is to create more separation between the concerns; you make the orchestration between the two parts explicit
List<SMSRequest> messages = domainEntity.getMessages();
List<SMSResult> results = sms.send(messages)
domainEntity.onSMS(results)
In this approach, all of the IO happens within the sms service itself; the interactions with the model are constrained to in memory representations. You've effectively got a protocol that's managing the changes in the model and the side effects at the boundary.
I feel that Evans is suggesting that service.send(notification) be the interface.
Horses for courses, I think -- passing an entity to a domain service responsible for orchestration of multiple changes within the model makes sense. I wouldn't choose that pattern for communicating state to/from the boundary within the context of a change to an aggregate.
For the interview of an oo design question: design message system, I am having trouble understanding what are some uses of public and private members/method for each class.
Long story short. Say we define the user class as the follows.
class user {
public:
string account_name;
string info;
vector<User> friend_list;
vector<Chat> chat_list;
void friend_request(User friend_target);
private:
string system_user_id;
}
I am wondering, should there be any private member in the first place?
Here, I defined system_user_id to be private because it shouldn't be exposed to the real user of the system. What do you guys think?
Another thing that I find helpful is considering encapsulation as it applies to clients of the user class, not just the external user.
A client could be an internal user. Imagine that in a couple months your user is the most popular thing on the internet and you have a team of developers working on your system.
They see a user class with a public account_name. They would like to change the name of the account so they update it directly. But what if a valid update requires synchronization with a datastore or something? The user class design has allowed the client (internal) the ability to create incorrect code!!
The same could go for friend_list, chat_list, if you're user is being used in a concurrent environment, you might need some sort of locking, if you expose the lists directly it allows your internal clients the option of creating race conditions, while if they were private and encapsulated you could better protect your internal clients.
I am quite new to OOP concepts and I'm trying to create a food delivery system system, and I have different users(admin,clerks,officers) that access the system
I have customers that will be registered into the system and orders that will be placed for the customers.
Therefore I have created methods for registering customers(registerCustomer) and placing orders(placeOrder) alongside other methods. Now I am quite confused which classes these methods will go under. Should the registerCustomer go under my User class(which different users inherit from) or Customer class. Same thing about the order placement. Should I create an order class or will placeOrder go under Customer or User class
There are quite a lot of ways you could do this, and many books and online resources that can teach you about object oriented programming. In general, you want to place your methods in classes that those methods operate on, and not in classes that can't be affected by those methods. So, if only Customers can be registered, and Clerks and Officers cannot, then the registerCustomer() method should be accessible only from the Customer class and not the User class it inherits from. Similarly, if only a Customer can place an Order then that's where the placeOrder() method should be located.
However, you should also consider what other object participates in each operation. For instance, perhaps the registerCustomer() method really belongs in a FoodDeliverySystem class. For instance:
FoodDeliverySystem mySystem = new FoodDeliverySystem();
Customer myCustomer = new Customer();
Order myOrder = new Order();
mySystem.registerCustomer(myCustomer);
myCustomer.placeOrder(myOrder);
I have a class called Contact and one called Account
and I have a method called public static Account GetAccount(Contact c) {...}
Where is the best place to put this method? What design patterns should I be looking at?
A) With the Contact class
B) With the Account class
C) Have the method accessible in both classes
D) Somewhere else?
There are probably many good answers to your question. I'll take a stab at an answer, but it will have my personal biases baked in it.
In OOP, you generally don't see globally accessible) functions, disconnected from, but available to all classes. (Static methods might be globally available, but they are still tied to a particular class). To follow up on dkatzel's answer, a common pattern is in OOP is instance manager. You have a class or instance that provides access to a a database, file store, REST service, or some other place where Contact or Account objects are saved for future use.
You might be using a persistence framework with your Python project. Maybe something like this: https://docs.djangoproject.com/en/dev/topics/db/managers/
Some persistence frameworks create handy methods instance methods like Contact.getAccount() -- send the getAccount message to a contact and the method return the associated Account object. ...Or developers can add these sorts of convenience methods themselves.
Another kind of convenience method can live on the static side of a class. For example, the Account class could have a static getAccountForContact() method that returns a particular account for a given Contact object. This method would access the instance manager and use the information in the contact object to look up the correct account.
Usually you would not add a static method to the Contact class called getAccountForContact(). Instead, you would create an instance method on Contact called getAccount(). This method could then call Account.getAccountForContact() and pass "self" in as the parameter. (Or talk to an instance manager directly).
My guiding principle is typically DRY - do not repeat yourself. I pick the option that eliminates the most copy-and-paste code.
If you define your method in this way, it's not really connected with either of your classes. You can as well put it in a Util class:
public class AccountUtil{
public static Account getAccount(Contact c){ ... }
// you can put other methods here, e.g.
public static Contact getContact(Account a){ ... }
}
This follows the pattern of grouping static functions in utility classes like Math in Java / C#.
If you would like to bound the function to a class in a clear way, consider designing your class like this:
public class Contact{
public Account getAccount(){ ... } // returns the Account of this Contact
// other methods
}
In OOP it is generally recommended that you avoid using global functions when possible. If you want a static function anyways, I'd put it in a separate class.
It depends on how the lookup from Contact to Account happens but I would vote for putting it in a new class that uses the Repository pattern.
Repository repo = ...
Account account = repo.getAccount(contact);
That way you can have multiple Repository implemtations that look up the info from a database, or an HTTP request or internal mapping etc. and you don't have to modify the code that uses the repositories.
My vote is for a new class, especially if the function returns an existing account object. That is, if you have a collection of instances of Contact and a collection of instances of Account and this function maps one to the other, use a new class to encapsulate this mapping.
Otherwise, it probably makes sense as a method on Contact if GetAccount returns a new account filled in from a template. This would hold if GetAccount is something like a factory method for the Account class, or if the Account class is just a record type (instances of which have lifetimes which are bound to instances of Contact).
The only way I see this making sense as part of Account is if it makes sense as a constructor.