How to test Stencil.js state change? - testing

I'm trying to figure out how to test state change in a Stencil web component using jest. I'm new to testing in general and have found that you can you use Enzyme to test state change within React components but I haven't been able to figure out how to do it with a Stencil component. How would I go about doing this?

Generally, you are not recommended to test the internal logic of component (state) but test public API(props, events) instead.
But if you wish to test it anyway, I suggest you check Testing documentation on stencils original website. If by testing a component you mean test it by instantiating a component explicitly then it means you are going to test an instance of plain javascript class. So if your state variable marked as private (which is a best practice) then you will not able to compile it, since TS will throw compilation errors. So, as an option (and the only as I see now) you can make those state members public and check them in your expects().

Related

How to properly test component logic in Vue.js

I'm writing a new Vue project and want to test my components with vue-test-utils.
So far I've been writing unit-tests with a test case for each component method, testing its expected behavior while mocking other methods that it might call.
Recently I've read on the Vue docs that the unit tests for components should test general behavior and not rely on implemenation details:
https://vuejs.org/guide/scaling-up/testing.html#component-testing
which makes sense, but I still want to test the logic of my component's methods.
I don't want to extract it to different files / composables because they heavily rely on the component's data and other methods, and I don't wanna pass everything as parameters.
What do you recommend regarding this?
I can't mock methods anymore since setMethods is now deprecated in vue-test-utils, which is making it harder to test each method separately.
do you think I should give up on testing each method?
I find it helpful to test methods because usually small changes make those tests fail which help me notice errors in the code, but also makes it harder because every small legitimate change requires unit-test changes as well.
We have done unit test using vue-jest. Here are the steps.
Use the following code to set up the crypto property globally. This will allow Jest to access window.crypto and won't cause any issue.Create a crypto.mock file and paste following code.
const crypto = require('crypto')
Object.defineProperty(global.self, 'crypto', {
value: {
getRandomValues: arr => crypto.randomBytes(arr.length)
}
})
Now import this file in your test file component. Now You can use jasmine.Spy to spy on the elements.
let spyFor: jasmine.Spy; spyFor = spyOn(function.hello, 'hello'); expect(spyFor).toHaveBeenCalledTimes(1);
In this way you can mock on the methods. Pls free to ask if you have anything more.

Is it possible to spy on an imported function within a Vue SFC using Vitest and Vue Test Utils?

I'm working on unit testing all of my components, and I've hit a bit of a snag (or maybe a misunderstanding of how to properly test).
I have a component that receives some parameters from the store, and then calls a series of functions that mostly return an input string with some transformations applied.
This looks something like the following:
<script setup lang="ts">
import { someTextTransform } from '../utilities/someTextTransform';
...
let parsedText = store.input;
if (store.applySomeTextTransform) {
parsedText = someTextTransform(parsedText);
}
I have already tested these functions themselves, so to me it seems like testing the actual output of the calls is unnecessary and I instead could just test to see if the functions have been called.
Here is a snippet on spying from the Vitest docs
Mocking functions can be split up into two different categories; spying & mocking.
Sometimes all you need is to validate whether or not a specific function has been called (and possibly which arguments were passed). In these cases a spy would be all we need which you can use directly with vi.spyOn().
This is exactly what I want. I want only to know whether or not the function has been called. The functions themselves are simple enough that they do not require additional setup (i.e., mocking is not required).
However looking through the docs of Vue Test Utils I don't see a way to do this. It looks like a more common way to do this is to mock the functions first and then you can spy on them more easily, but then I would have to create mocks that don't actually mock the functions which seems like I'm adding code to my codebase for no benefit other than a weird workaround.
I may just be missing something on how to do this, but I might also be approaching the testing in a suboptimal way so any advice is appreciated.

Why use Context API when we can use a static variable?

I am getting start to study Context API of the React Native.
I understand that the Context API is to solve the problem to send a lot of props in the parameters.
It seems to me as a global variable.
In this case, to use a static variable of a class in JS don't fix the problem of a variable global?
Why use Context API when we can use a static variable?
What are better in Context API?
Are others API that use Context API in React Native as pre-requisite?
In my experience you can do exactly as you're describing...
You'd set a static property App.instance = this in App's constructor.
Your App class has static methods which can access App.instance.state and App.instance.setState().
I'm curious why this approach isn't mentioned anywhere. Possibly because you can't use static properties in functional components, so it's a bit unfashionable. And it feels like it goes against react's component tree structure.
There is also the general feeling that statics are evil.

How to setState in react-testing-library

Overview:
I refactoring script tests before I was used Enzyme to test, but now, I want to use #testing-library/react
Problem:
I can't find a solution for setState in #testing-library/react
Using setState is dangerous approach regardless testing library used.
It depends on implementation details(say, property names inside the state) so it becomes much harder to maintain tests - more tests to change, easy to get test broken when app is fine etc.
You cannot call that once you convert class component to functional one with hooks. So you depends on implementation details even more.
And finally direct state manipulation may end with state you would never get in real world. This means your component will be broken because it's impossible to reach some state but your tests with direct initialization will be fine.
So what you better do? Provide props, change props, call props(wrapper.find('button').filter(button => button.text() === 'Cancel').props().onClick() for enzyme, fireEvent.click(getByText(/Cancel/i)) for RTL) and verify against what's rendered.
This way your tests will be shorter, most actual and need less changes after you update component under test.

unit tests - white box vs. black box strategies

I found, that when I writing unit tests, especially for methods who do not return the value, I mostly write tests in white box testing manner. I could use reflection to read private data to check is it in the proper state after method execution, etc...
this approach has a lot of limitation, most important of which is
You need to change your tests if you rework method, even is API stay
the same
It's wrong from information hiding (encapsulation) point of view -
tests is a good documentation for our code, so person who will read
it could get some unnecessary info about implementation
But, if method do not return a value and operate with private data, so it's start's very hard (almost impossible) to test like with a black-box testing paradigm.
So, any ideas for a good solution in that problem?
White box testing means that you necessarily have to pull some of the wiring out on the table to hook up your instruments. Stuff I've found helpful:
1) One monolithic sequence of code, that I inherited and didn't want to rewrite, I was able to instrument by putting a state class variable into, and then setting the state as each step passed. Then I tested with different data and matched up the expected state with the actual state.
2) Create mocks for any method calls of your method under test. Check to see that the mock was called as expected.
3) Make needed properties into protected instead of private, and create a sub-class that I actually tested. The sub-class allowed me to inspect the state.
I could use reflection to read private data to check is it in the proper state after method execution
This can really be a great problem for maintenance of your test suite
in .Net instead you could use internal access modifier, so you could use the InternalsVisibleToAttribute in your class library to make your internal types visible to your unit test project.
The internal keyword is an access modifier for types and type members. Internal types or members are accessible only within files in the same assembly
This will not resolve every testing difficulty, but can help
Reference