We have an API endpoint which accepts people.
During the call we check to ensure that the person PIN has not already been used, if so we reject the request with a 422 input error.
Recently a client complained about a duplicate PIN and we found that the API endpoint was being triggered by two different REST calls with duplicated PINs but not a duplicate body.
i.e.
{First Name: John, Last Name: Doe, PIN: 722}
{First Name: Jane, Last Name: Doe, PIN: 722}
As both come in within milliseconds of each other when the test is performed on the second record for the duplicate PIN it returns false as the first record has not yet been inserted into the DB and as a result continues to process the second record.
We have looked into a few options, such as unique constraints on the DB which do work but would require huge amounts of rework to bubble the error up to the REST API response. A huge risk on a thriving production APP.
There are around 5-6 different API calls that can modify the PIN collection in one guise or another and around 20-30 different APIs where this sort of problem exists (unique emails, unique item name etc) so I am not sure we can maintain lists for quick access.
Aside from the DB constraints are there any other options available to us that would be simpler to implement? Perhaps some obscure attribute on the .NET APIController class.
In my head at least I would like a request to be made, and subsequent requests to be queued. I am aware we can simply store the payload for processing later however on the basis the APIs are already being consumed this doesn't seem to be an option the queue would have to block the response.
Trying to Google this has been far from successful as everything assumes I am trying to decline duplicate complete bodies.
If you're basing the check on whether the PIN exists in the db, in theory you could have tens or hundreds of potential duplicates coming in on the REST API, all assuming the PIN is ok as the database is slow to say whether a PIN exists.
If you think of it as a pipeline:
client -> API -> PIN check from db -> ok -> insert in db
the PIN check from db is a bottleneck as it will most likely be slower than incoming REST calls. As you say, the solution is to enforce the uniqueness at the database level but if that's not practical, you could use a 'gateway' check instead. Basically a PIN cache that's fast to update/query and PINs are added to it once the request has been accepted for processing and before they're written to the database. So the pipeline becomes:
client -> API -> PIN check from cache -> ok -> write PIN to cache ->
insert in db
and the second request would end up as:
client -> API -> PIN check from cache -> exists -> fail
so the cache is keeping up with the requests, allowing the more leisurely database operations to continue with known clean data. You'd have to build the cache (from PINs in the database) on every service restart and only allow API calls once the cache is ready if it's a memory cache. Or you could use a disk cache. The downside is it duplicates all the PINs in your database but it's a compromise that lets you keep up with checking PINs in API calls.
Related
I am currently developing a Microservice that is interacting with other microservices.
The problem now is that those interactions are really time-consuming. I already implemented concurrent calls via Uni and uses caching where useful. Now I still have some calls that still need some seconds in order to respond and now I thought of another thing, which I could do, in order to improve the performance:
Is it possible to send a response before the sucessfull persistence of data? I send requests to the other microservices where they have to persist the results of my methods. Can I already send the user the result in a first response and make a second response if the persistence process was sucessfull?
With that, the front-end could already begin working even though my API is not 100% finished.
I saw that there is a possible status-code 207 but it's rather used with streams where someone wants to split large files. Is there another possibility? Thanks in advance.
"Is it possible to send a response before the sucessfull persistence of data? Can I already send the user the result in a first response and make a second response if the persistence process was sucessfull? With that, the front-end could already begin working even though my API is not 100% finished."
You can and should, but it is a philosophy change in your API and possibly you have to consider some edge cases and techniques to deal with them.
In case of a long running API call, you can issue an "ack" response, a traditional 200 one, only the answer would just mean the operation is asynchronous and will complete in the future, something like { id:49584958, apicall:"create", status:"queued", result:true }
Then you can
poll your API with the returned ID to see if the operation that is still ongoing, has succeeded or failed.
have a SSE channel (realtime server side events) where your server can issue status messages as pending operations finish
maybe using persistent connections and keepalives, or flushing the response in the middle, you can achieve what you point out, ie. like a segmented response. I am not familiar with that approach as I normally go for the suggesions above.
But in any case, edge cases apply exactly the same: For example, what happens if then through your API a user issues calls dependent on the success of an ongoing or not even started previous command? like for example, get information about something still being persisted?
You will have to deal with these situations with mechanisms like:
Reject related operations until pending call is resolved "server side": Api could return ie. a BUSY error informing that operations are still ongoing when you want to, for example, delete something that still is being created.
Queue all operations so the server executes all them sequentially.
Allow some simulatenous operations if you find they will not collide (ie. create 2 unrelated items)
What is the best way to achieve DB consistency in microservice-based systems?
At the GOTO in Berlin, Martin Fowler was talking about microservices and one "rule" he mentioned was to keep "per-service" databases, which means that services cannot directly connect to a DB "owned" by another service.
This is super-nice and elegant but in practice it becomes a bit tricky. Suppose that you have a few services:
a frontend
an order-management service
a loyalty-program service
Now, a customer make a purchase on your frontend, which will call the order management service, which will save everything in the DB -- no problem. At this point, there will also be a call to the loyalty-program service so that it credits / debits points from your account.
Now, when everything is on the same DB / DB server it all becomes easy since you can run everything in one transaction: if the loyalty program service fails to write to the DB we can roll the whole thing back.
When we do DB operations throughout multiple services this isn't possible, as we don't rely on one connection / take advantage of running a single transaction.
What are the best patterns to keep things consistent and live a happy life?
I'm quite eager to hear your suggestions!..and thanks in advance!
This is super-nice and elegant but in practice it becomes a bit tricky
What it means "in practice" is that you need to design your microservices in such a way that the necessary business consistency is fulfilled when following the rule:
that services cannot directly connect to a DB "owned" by another service.
In other words - don't make any assumptions about their responsibilities and change the boundaries as needed until you can find a way to make that work.
Now, to your question:
What are the best patterns to keep things consistent and live a happy life?
For things that don't require immediate consistency, and updating loyalty points seems to fall in that category, you could use a reliable pub/sub pattern to dispatch events from one microservice to be processed by others. The reliable bit is that you'd want good retries, rollback, and idempotence (or transactionality) for the event processing stuff.
If you're running on .NET some examples of infrastructure that support this kind of reliability include NServiceBus and MassTransit. Full disclosure - I'm the founder of NServiceBus.
Update: Following comments regarding concerns about the loyalty points: "if balance updates are processed with delay, a customer may actually be able to order more items than they have points for".
Many people struggle with these kinds of requirements for strong consistency. The thing is that these kinds of scenarios can usually be dealt with by introducing additional rules, like if a user ends up with negative loyalty points notify them. If T goes by without the loyalty points being sorted out, notify the user that they will be charged M based on some conversion rate. This policy should be visible to customers when they use points to purchase stuff.
I don’t usually deal with microservices, and this might not be a good way of doing things, but here’s an idea:
To restate the problem, the system consists of three independent-but-communicating parts: the frontend, the order-management backend, and the loyalty-program backend. The frontend wants to make sure some state is saved in both the order-management backend and the loyalty-program backend.
One possible solution would be to implement some type of two-phase commit:
First, the frontend places a record in its own database with all the data. Call this the frontend record.
The frontend asks the order-management backend for a transaction ID, and passes it whatever data it would need to complete the action. The order-management backend stores this data in a staging area, associating with it a fresh transaction ID and returning that to the frontend.
The order-management transaction ID is stored as part of the frontend record.
The frontend asks the loyalty-program backend for a transaction ID, and passes it whatever data it would need to complete the action. The loyalty-program backend stores this data in a staging area, associating with it a fresh transaction ID and returning that to the frontend.
The loyalty-program transaction ID is stored as part of the frontend record.
The frontend tells the order-management backend to finalize the transaction associated with the transaction ID the frontend stored.
The frontend tells the loyalty-program backend to finalize the transaction associated with the transaction ID the frontend stored.
The frontend deletes its frontend record.
If this is implemented, the changes will not necessarily be atomic, but it will be eventually consistent. Let’s think of the places it could fail:
If it fails in the first step, no data will change.
If it fails in the second, third, fourth, or fifth, when the system comes back online it can scan through all frontend records, looking for records without an associated transaction ID (of either type). If it comes across any such record, it can replay beginning at step 2. (If there is a failure in step 3 or 5, there will be some abandoned records left in the backends, but it is never moved out of the staging area so it is OK.)
If it fails in the sixth, seventh, or eighth step, when the system comes back online it can look for all frontend records with both transaction IDs filled in. It can then query the backends to see the state of these transactions—committed or uncommitted. Depending on which have been committed, it can resume from the appropriate step.
I agree with what #Udi Dahan said. Just want to add to his answer.
I think you need to persist the request to the loyalty program so that if it fails it can be done at some other point. There are various ways to word/do this.
1) Make the loyalty program API failure recoverable. That is to say it can persist requests so that they do not get lost and can be recovered (re-executed) at some later point.
2) Execute the loyalty program requests asynchronously. That is to say, persist the request somewhere first then allow the service to read it from this persisted store. Only remove from the persisted store when successfully executed.
3) Do what Udi said, and place it on a good queue (pub/sub pattern to be exact). This usually requires that the subscriber do one of two things... either persist the request before removing from the queue (goto 1) --OR-- first borrow the request from the queue, then after successfully processing the request, have the request removed from the queue (this is my preference).
All three accomplish the same thing. They move the request to a persisted place where it can be worked on till successful completion. The request is never lost, and retried if necessary till a satisfactory state is reached.
I like to use the example of a relay race. Each service or piece of code must take hold and ownership of the request before allowing the previous piece of code to let go of it. Once it's handed off, the current owner must not lose the request till it gets processed or handed off to some other piece of code.
Even for distributed transactions you can get into "transaction in doubt status" if one of the participants crashes in the midst of the transaction. If you design the services as idempotent operation then life becomes a bit easier. One can write programs to fulfill business conditions without XA. Pat Helland has written excellent paper on this called "Life Beyond XA". Basically the approach is to make as minimum assumptions about remote entities as possible. He also illustrated an approach called Open Nested Transactions (http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper142.pdf) to model business processes. In this specific case, Purchase transaction would be top level flow and loyalty and order management will be next level flows. The trick is to crate granular services as idempotent services with compensation logic. So if any thing fails anywhere in the flow, individual services can compensate for it. So e.g. if order fails for some reason, loyalty can deduct the accrued point for that purchase.
Other approach is to model using eventual consistency using CALM or CRDTs. I've written a blog to highlight using CALM in real life - http://shripad-agashe.github.io/2015/08/Art-Of-Disorderly-Programming May be it will help you.
what would be the best option for exposing 220k records to third party applications?
SF style 'bulk API' - independent of the standard API to maintain availability
server-side pagination
call back to a ftp generated file?
webhooks?
This bulk will have to happen once a day or so. ANY OTHER SUGGESTIONS WELCOME!
How are the 220k records being used?
Must serve it all at once
Not ideal for human consumers of this endpoint without special GUI considerations and communication.
A. I think that using a 'bulk API' would be marginally better than reading a file of the same data. (Not 100% sure on this.) Opening and interpreting a file might take a little bit more time than directly accessing data provided in an endpoint's response body.
Can send it in pieces
B. If only a small amount of data is needed at once, then server-side pagination should be used and allows the consumer to request new batches of data as desired. This reduces unnecessary server load by not sending data without it being specifically requested.
C. If all of it needs to be received during a user-session, then find a way to send the consumer partial information along the way. Often users can be temporarily satisfied with partial data while the rest loads, so update the client periodically with information as it arrives. Consider AJAX Long-Polling, HTML5 Server Sent Events (SSE), HTML5 Websockets as described here: What are Long-Polling, Websockets, Server-Sent Events (SSE) and Comet?. Tech stack details and third party requirements will likely limit your options. Make sure to communicate to users that the application is still working on the request until it is finished.
Can send less data
D. If the third party applications only need to show updated records, could a different endpoint be created for exposing this more manageable (hopefully) subset of records?
E. If the end-result is displaying this data in a user-centric application, then maybe a manageable amount of summary data could be sent instead? Are there user-centric applications that show 220k records at once, instead of fetching individual ones (or small batches)?
I would use a streaming API. This is an API that does a "select * from table" and then streams the results to the consumer. You do this using a for loop to fetch and output the records. This way you never use much memory and as long as you frequently flush the output the webserver will not close the connection and you will support any size of result set.
I know this works as I (shameless plug) wrote the mysql-crud-api that actually does this.
From a lot of articles and commercial API I saw, most people make their APIs idempotent by asking the client to provide a requestId or idempotent-key (e.g. https://www.masteringmodernpayments.com/blog/idempotent-stripe-requests) and basically store the requestId <-> response map in the storage. So if there's a request coming in which already is in this map, the application would just return the stored response.
This is all good to me but my problem is how do I handle the case where the second call coming in while the first call is still in progress?
So here is my questions
I guess the ideal behaviour would be the second call keep waiting until the first call finishes and returns the first call's response? Is this how people doing it?
if yes, how long should the second call wait for the first call to be finished?
if the second call has a wait time limit and the first call still hasn't finished, what should it tell the client? Should it just not return any responses so the client will timeout and retry again?
For wunderlist we use database constraints to make sure that no request id (which is a column in every one of our tables) is ever used twice. Since our database technology (postgres) guarantees that it would be impossible for two records to be inserted that violate this constraint, we only need to react to the potential insertion error properly. Basically, we outsource this detail to our datastore.
I would recommend, no matter how you go about this, to try not to need to coordinate in your application. If you try to know if two things are happening at once then there is a high likelihood that there would be bugs. Instead, there might be a system you already use which can make the guarantees you need.
Now, to specifically address your three questions:
For us, since we use database constraints, the database handles making things queue up and wait. This is why I personally prefer the old SQL databases - not for the SQL or relations, but because they are really good at locking and queuing. We use SQL databases as dumb disconnected tables.
This depends a lot on your system. We try to tune all of our timeouts to around 1s in each system and subsystem. We'd rather fail fast than queue up. You can measure and then look at your 99th percentile for timings and just set that as your timeout if you don't know ahead of time.
We would return a 504 http status (and appropriate response body) to the client. The reason for having a idempotent-key is so the client can retry a request - so we are never worried about timing out and letting them do just that. Again, we'd rather timeout fast and fix the problems than to let things queue up. If things queue up then even after something is fixed one has to wait a while for things to get better.
It's a bit hard to understand if the second call is from the same client with the same request token, or a different client.
Normally in the case of concurrent requests from different clients operating on the same resource, you would also want to implementing a versioning strategy alongside a request token for idempotency.
A typical version strategy in a relational database might be a version column with a trigger that auto increments the number each time a record is updated.
With this in place, all clients must specify their request token as well as the version they are updating (typical the IfMatch header is used for this and the version number is used as the value of the ETag).
On the server side, when it comes time to update the state of the resource, you first check that the version number in the database matches the supplied version in the ETag. If they do, you write the changes and the version increments. Assuming the second request was operating on the same version number as the first, it would then fail with a 412 (or 409 depending on how you interpret HTTP specifications) and the client should not retry.
If you really want to stop the second request immediately while the first request is in progress, you are going down the route of pessimistic locking, which doesn't suit REST API's that well.
In the case where you are actually talking about the client retrying with the same request token because it received a transient network error, it's almost the same case.
Both requests will be running at the same time, the second request will start because the first request still has not finished and has not recorded the request token to the database yet, but whichever one ends up finishing first will succeed and record the request token.
For the other request, it will receive a version conflict (since the first request has incremented the version) at which point it should recheck the request token database table, find it's own token in there and assume that it was a concurrent request that finished before it did and return 200.
It's seems like a lot, but if you want to cover all the weird and wonderful failure modes when your dealing with REST, idempotency and concurrency this is way to deal with it.
I need one a bit theoretical advice. Here is my situation : I have a search system, which returns a list of found items. But the user is allowed to display only particular amount of items on one page, so when his first request is sent to my WCF service, it gets the whole list, then tests if the list isn't longer then the ammount of items my user is allowed to get and if the list isn't longer, there is no problem and my service returns the whole list, but when it is, then there is problem. I need to let the user choose which page he wants to display, so I let the javascript know that the user should choose page and the "page number dialog" is shown and then user is sending the second request with page number. And based on this request the webservice selects relewant items and sends them back to user. So what I need to do is to store the whole list on the server between first and second request and I 'd appreciate any idehow to store it. I was thinking about session, but I don't know if it is possible to set timeout only to particular sesion (ex. Session["list"]), because the list is used only once and can have thousands of items, so I don't want to keep it on the server to long.
PS. I Can't use standart pagination, the scenario has to be exactly how is described above.
Thanks
This sounds like a classic use-case for memcached. It is a network based key-value store for storing temporary values. Unlike in-memory state, it can be used to share temporary cached values among servers (say you have multiple nodes), and it is a great way to save state across requests (avoiding the latency that would be caused by using cookies, which are transmitted to/from the server on each http request).
The basic approach is to create a unique ID for each request, and associate it with a particular (set of) memcached key for that user's requests. You then save this unique ID in a cookie (or similar mechanism).
A warning, though, the memory is volatile, so can be lost at any point. In practice, this is not frequent, and the memcached algorithm uses a LRU queue. More details http://code.google.com/p/memcached/wiki/NewOverview
http://memcached.org/
Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.
I'm not a .net programmer, but there appear to be implementations:
http://code.google.com/p/memcached/wiki/Clients
.Net memcached client
https://sourceforge.net/projects/memcacheddotnet .Net 2.0 memcached
client
http://www.codeplex.com/EnyimMemcached Client developed in .NET 2.0
keeping performance and extensibility in mind. (Supports consistent
hashing.) http://www.codeplex.com/memcachedproviders BeIT Memcached
Client (optimized C# 2.0)
http://code.google.com/p/beitmemcached jehiah
http://jehiah.cz/projects/memcached-win32