How to create a matrix consists of submatrix - numpy

I want to create a matrix consists of some submatrix, or elements are defined by some conditions about indices.
e.g.
X = np.array(
[[0, 0, 1, 1, 1],
[0, 0, 1, 1, 1],
[1, 1, 0, 0, 1],
[1, 1, 0, 0, 1],
[1, 1, 1, 1, 0]]
)
where i-row and j-col meets conditions below
0 if 2k ≤ i < 2(k+1) and 2k ≤ j < 2(k+1)
1 otherwise
In the above condition, k is 0, 1, 2... and 2 is also a parameter to change and
So, what I finally need is
0 if nk ≤ i < n(k+1) nk ≤ j < n(k+1)
1 otherwise
I think np.ix_ is good for this demand, but it requires a loop structure (I hate loops).
Is there some nice way to generate this?

One way would be utilizing the outer method of the not_equal operator like so:
N = 17; k = 5
np.not_equal.outer(*2*(np.arange(N)//k,)).view('u1')
# array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=uint8)

Related

KeyError: "None of [Index([...] are in the [columns]

I've got numpy array with shape of (3, 50):
data = np.array([[0, 3, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 0, 0,
1, 1, 2, 0, 0, 2],
[0, 0, 0, 0, 0, 3, 0, 1, 6, 1, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0,
3, 0, 0, 0, 0, 0, 0, 5, 2, 2, 2, 1, 0, 0, 1, 0, 1, 3, 2, 0, 0, 0,
0, 0, 2, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0]])
and the following column names:
new_cols = [f'description_word_{i+1}_count' for i in range(50)]
I'm trying to add new columns in already existing dataframe in such way:
df[new_cols] = data
but get the error:
KeyError: "None of [Index(['description_word_1_count',
'description_word_2_count',\n 'description_word_3_count',
'description_word_4_count',\n 'description_word_5_count',
'description_word_6_count',\n 'description_word_7_count',
'description_word_8_count',\n 'description_word_9_count',
'description_word_10_count',\n 'description_word_11_count',
'description_word_12_count',\n 'description_word_13_count',
'description_word_14_count',\n 'description_word_15_count',
'description_word_16_count',\n 'description_word_17_count',
'description_word_18_count',\n 'description_word_19_count',
'description_word_20_count',\n 'description_word_21_count',
'description_word_22_count',\n 'description_word_23_count',
'description_word_24_count',\n 'description_word_25_count',
'description_word_26_count',\n 'description_word_27_count',
'description_word_28_count',\n 'description_word_29_count',
'description_word_30_count',\n 'description_word_31_count',
'description_word_32_count',\n 'description_word_33_count',
'description_word_34_count',\n 'description_word_35_count',
'description_word_36_count',\n 'description_word_37_count',
'description_word_38_count',\n 'description_word_39_count',
'description_word_40_count',\n 'description_word_41_count',
'description_word_42_count',\n 'description_word_43_count',
'description_word_44_count',\n 'description_word_45_count',
'description_word_46_count',\n 'description_word_47_count',
'description_word_48_count',\n 'description_word_49_count',
'description_word_50_count'],\n dtype='object')] are in the
[columns]"
Also I don't know where it finds a '\n' symbols in my column names.
At the same time creating a new dataframe with the data is OK:
new_df = pd.DataFrame(data=data, columns=new_cols)
Does anyone know what is causing the error?
Suppose you have a df like this:
df = pd.DataFrame({'person': [1,1,1], 'event': ['A','B','C']})
You can add new columns like this:
import pandas as pd
import numpy as np
data = np.array([[0, 3, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 0, 0,
1, 1, 2, 0, 0, 2],
[0, 0, 0, 0, 0, 3, 0, 1, 6, 1, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0,
3, 0, 0, 0, 0, 0, 0, 5, 2, 2, 2, 1, 0, 0, 1, 0, 1, 3, 2, 0, 0, 0,
0, 0, 2, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0]])
new_cols = [f'description_word_{i+1}_count' for i in range(50)]
df[new_cols] = pd.DataFrame(data, index=df.index)
I think the problem is that you are using a syntax to create series, when you actually need to create several series. In other words, a dataframe.

Fill values in numpy array that are between a certain value

Let's say I have an array that looks like this:
a = np.array([0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0])
I want to fill the values that are between 1's with 1's.
So this would be the desired output:
a = np.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0])
I have taken a look into this answer, which yields the following:
array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1])
I am sure this answer is really close to the output I want. However, although tried countless times, I can't change this code into making it work the way I want, as I am not that proficient with numpy arrays.
Any help is much appreciated!
Try this
b = ((a == 1).cumsum() % 2) | a
Out[10]:
array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0], dtype=int32)
From #Paul Panzer: use ufunc.accumulate with bitwise_xor
b = np.bitwise_xor.accumulate(a)|a
Try this:
import numpy as np
num_lst = np.array(
[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0])
i = 0
while i < len(num_lst): # Iterate through the list
if num_lst[i]: # Check if element is 1 at i-th position
if not num_lst[i+1]: # Check if next element is 0
num_lst[i+1] = 1 # Change next element to 1
i += 1 # Continue through loop
else: # Check if next element is 1
i += 2 # Skip next element
else:
i += 1 # Continue through loop
print(num_lst)
This is probably not the most elegant way to execute this, but it should work. Basically, we loop through the list to find any 1s. When we find an element that is 1, we check if the next element is 0. If it is, then we change the next element to 1. If the next element is 1, that means we should stop changing 0s to 1s, so we jump over that element and proceed with the iteration.

Is there a way to slice out multiple 2D numpy arrays from one 2D numpy array in one batch operation?

I have a numpy array heatmap of shape (img_height, img_width) and another array bboxes of shape (K, 4), where K is a number of bounding boxes.
Each bounding box is defined
like so: [x_top_left, y_top_left, width, height].
Here's an example of such array:
bboxes = np.array([
[0, 0, 4, 7],
[3, 4, 3, 4],
[7, 2, 3, 7]
])
heatmap is initally filled with zeros.
What I need to do is to put value 1 for each bounding box in it's corresponding place.
The resulting heatmap should be:
heatmap = np.array([
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
])
Important things to note:
axis 0 corresponds to image height
axis 1 corresponds to image width
I've already solved this using python for loop, like so:
for bbox in bboxes:
# y_top_left:y_top_left + img_height, x_top_left:x_top_left + img_width
heatmap[bbox[1] : bbox[1] + bbox[3], bbox[0] : bbox[0] + bbox[2]] = 1
I would like to avoid using python for loops (if it's possible) and be able to do something like this:
heatmap[bboxes[:,1] : bboxes[:,1] + bboxes[:,3], bboxes[:,0]:bboxes[:,0] + bboxes[:,2]] = 1
Is there a way of doing such multiple slicing in numpy?
I am aware of numpy integer array indexing, but to generate such indices I am also unable to avoid python for loops.

Vectorize this for loop in numpy

I am trying to compute matrix z (defined below) in python with numpy.
Here's my current solution (using 1 for loop)
z = np.zeros((n, k))
for i in range(n):
v = pi * (1 / math.factorial(x[i])) * np.exp(-1 * lamb) * (lamb ** x[i])
numerator = np.sum(v)
c = v / numerator
z[i, :] = c
return z
Is it possible to completely vectorize this computation? I need to do this computation for thousands of iterations, and matrix operations in numpy is much faster than huge for loops.
Here is a vectorized version of E. It replaces the for-loop and scalar arithmetic with NumPy broadcasting and array-based arithmetic:
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x)) / special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
I ran em.py to get a sense for the typical size of x, lamb, pi, n and k. On data of this size,
alt_E is about 120x faster than E:
In [32]: %timeit E(x)
100 loops, best of 3: 11.5 ms per loop
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [34]: 11500/94.7
Out[34]: 121.43611404435057
This is the setup I used for the benchmark:
import math
import numpy as np
import scipy.special as special
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x)) / special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
def E(x):
z = np.zeros((n, k))
for i in range(n):
v = pi * (1 / math.factorial(x[i])) * \
np.exp(-1 * lamb) * (lamb ** x[i])
numerator = np.sum(v)
c = v / numerator
z[i, :] = c
return z
n = 576
k = 2
x = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5])
lamb = np.array([ 0.84835141, 1.04025989])
pi = np.array([ 0.5806958, 0.4193042])
assert np.allclose(alt_E(x), E(x))
By the way, E could also be calculated using scipy.stats.poisson:
import scipy.stats as stats
pois = stats.poisson(mu=lamb)
def alt_E2(x):
z = pi * pois.pmf(x[:,None])
denom = z.sum(axis=1)[:, None]
z /= denom
return z
but this does not turn out to be faster, at least for arrays of this length:
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [102]: %timeit alt_E2(x)
1000 loops, best of 3: 278 µs per loop
For larger x, alt_E2 is faster:
In [104]: x = np.random.random(10000)
In [106]: %timeit alt_E(x)
100 loops, best of 3: 2.18 ms per loop
In [105]: %timeit alt_E2(x)
1000 loops, best of 3: 643 µs per loop

Transform a matrix made of binomial vectors to ranges for consecutive zeros

I am trying to figure out how to do this transformation symbolically in theano a matrix of undetermined size
From:
[[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1],
.
.
]
To:
[[1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 0, 1, 0, 1, 2, 3, 0],
[1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 0, 0, 0, 0, 0, 0],
.
.
]
So for every consecutive 0 I want an increasing range and whenever I stumble on a 1 the range resets.
Here's one way to do it, using inefficient scans:
import theano
import theano.tensor as tt
def inner_step(x_t_t, y_t_tm1):
return tt.switch(x_t_t, 0, y_t_tm1 + 1)
def outer_step(x_t):
return theano.scan(inner_step, sequences=[x_t], outputs_info=[0])[0]
def compile():
x = tt.bmatrix()
y = theano.scan(outer_step, sequences=[x])[0]
return theano.function([x], y)
def main():
f = compile()
data = [[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1]]
print f(data)
main()
When run, this prints:
[[1 2 3 0 1 2 3 4 5 0 0 1 0 1 2 3 0]
[1 2 3 4 5 6 7 8 0 1 2 0 0 0 0 0 0]]