I am plotting a relplot with Seaborn, but getting the legend (and an empty axis plot) printed under the main plot.
Here is how it looks like (in 2 photos, as my screen isn't that big):
Here is the code I used:
fig, axes = plt.subplots(1, 1, figsize=(12, 5))
clean_df['tax_class_at_sale'] = clean_df['tax_class_at_sale'].apply(str)
sns.relplot(x="sale_price_millions", y='gross_sqft_thousands', hue="neighborhood", data=clean_df, ax=axes)
fig.suptitle('Sale Price by Neighborhood', position=(.5,1.05), fontsize=20)
fig.tight_layout()
fig.show()
Does someone has an idea how to fix that, so that the legend (maybe much smaller, but it's not a problem) is printed next to the plot, and the empty axis disappears?
Here is my dataset form (in 2 screenshot, to capture all columns. "sale_price_millions" is the target column)
Since you failed to provide a Minimal, Complete, and Verifiable example, no one can give you a final working answer because we can't reproduce your figure. Nevertheless, you can try specifying the location for placing the legend as following and see if it works as you want
sns.relplot(x="sale_price_millions", y='gross_sqft_thousands', hue="neighborhood", data=clean_df, ax=axes)
plt.legend(loc=(1.05, 0.5))
Related
I am trying to create two images side by side: one satellite image alone, and next to it, the same satellite image with outlines of agricultural fields. My raster data "raster_clip" is loaded into rioxarray (original satellite image from NAIP, converted from .sid to .tif), and my vector data "ag_clip" is in geopandas. My code is as follows:
fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize=(14,8))
raster_clip.plot.imshow(ax=ax1)
raster_clip.plot.imshow(ax=ax2)
ag_clip.boundary.plot(ax=ax1, color="yellow")
I can't seem to figure out how to get the y axes in each plot to be the same. When the vector data is excluded, then the two plots end up the same shape and size.
I have tried the following:
Setting sharey=True in the subplots method. Doesn't affect shape of resulting images, just removes the tic labels on the second image.
Setting "aspect='equal'" in the imshow method, leads to an error, which doesn't make sense because the 'aspect' kwarg is listed in the documentation for xarray.plot.imshow.
plt.imshow's 'aspect' kwarg is not available in xarray
Removing the "figsize" variable, doesn't affect the ratio of the two plots.
not entirely related to your question but i've used cartopy before for overlaying a GeoDataFrame to a DataArray
plt.figure(figsize=(16, 8))
ax = plt.subplot(projection=ccrs.PlateCarree())
ds.plot(ax=ax)
gdf.plot(ax=ax)
I am creating a series of boxplots in order to compare different cancer types with each other (based on 5 categories). For plotting I use seaborn/matplotlib. It works fine for most of the cancer types (see image right) however in some the x axis collapses slightly (see image left) or strongly (see image middle)
https://i.imgur.com/dxLR4B4.png
Looking into the code how seaborn plots a box/violin plot https://github.com/mwaskom/seaborn/blob/36964d7ffba3683de2117d25f224f8ebef015298/seaborn/categorical.py (line 961)
violin_data = remove_na(group_data[hue_mask])
I realized that this happens when there are too many nans
Is there any possibility to prevent this collapsing by code only
I do not want to modify my dataframe (replace the nans by zero)
Below you find my code:
boxp_df=pd.read_csv(pf_in,sep="\t",skip_blank_lines=False)
fig, ax = plt.subplots(figsize=(10, 10))
sns.violinplot(data=boxp_df, ax=ax)
plt.xticks(rotation=-45)
plt.ylabel("label")
plt.tight_layout()
plt.savefig(pf_out)
The output is a per cancer type differently sized plot
(depending on if there is any category completely nan)
I am expecting each plot to be in the same width.
Update
trying to use the order parameter as suggested leads to the following output:
https://i.imgur.com/uSm13Qw.png
Maybe this toy example helps ?
|Cat1|Cat2|Cat3|Cat4|Cat5
|3.93| |0.52| |6.01
|3.34| |0.89| |2.89
|3.39| |1.96| |4.63
|1.59| |3.66| |3.75
|2.73| |0.39| |2.87
|0.08| |1.25| |-0.27
Update
Apparently, the problem is not the data but the length of the title
https://github.com/matplotlib/matplotlib/issues/4413
Therefore I would close the question
#Diziet should I delete it or does my issue might help other ones?
Sorry for not including the line below in the code example:
ax.set_title("VERY LONG TITLE", fontsize=20)
It's hard to be sure without data to test it with, but I think you can pass the names of your categories/cancers to the order= parameter. This forces seaborn to use/display those, even if they are empty.
for instance:
tips = sns.load_dataset("tips")
ax = sns.violinplot(x="day", y="total_bill", data=tips, order=['Thur','Fri','Sat','Freedom Day','Sun','Durin\'s Day'])
I am trying to visualize some data and have built a scatter plot with this code -
sns.regplot(y="Calls", x="clientid", data=Drop)
This is the output -
I don't want it to consider the x-axis. I just want to see how the data lie w.r.t y-axis. Is there a way to do that?
As #iayork suggested, you can see the distribution of your points with a striplot or a swarmplot (you could also combine them with a violinplot). If you need to move the points closer to the y-axis, you can simply adjust the size of the figure so that the width is small compared to the height (here i'm doing 2 subplots on a 4x5 in figure, which means that each plot is roughly 2x5 in).
fig, (ax1,ax2) = plt.subplots(1,2, figsize=(4,5))
sns.stripplot(d, orient='vert', ax=ax1)
sns.swarmplot(d, orient='vert', ax=ax2)
plt.tight_layout()
However, I'm going to suggest that maybe you want to use distplot instead. This function is specifically created to show the distribution of you data. Here i'm plotting the KDE of the data, as well as the "rugplot", which shows the position of the points along the y-axis:
fig = plt.figure()
sns.distplot(d, kde=True, vertical=True, rug=True, hist=False, kde_kws=dict(shade=True), rug_kws=dict(lw=2, color='orange'))
I'm trying to plot a two-dimensional array in matplotlib using imshow(), and overlay it with a scatterplot on a second y axis.
oneDim = np.array([0.5,1,2.5,3.7])
twoDim = np.random.rand(8,4)
plt.figure()
ax1 = plt.gca()
ax1.imshow(twoDim, cmap='Purples', interpolation='nearest')
ax1.set_xticks(np.arange(0,twoDim.shape[1],1))
ax1.set_yticks(np.arange(0,twoDim.shape[0],1))
ax1.set_yticklabels(np.arange(0,twoDim.shape[0],1))
ax1.grid()
#This is the line that causes problems
ax2 = ax1.twinx()
#That's not really part of the problem (it seems)
oneDimX = oneDim.shape[0]
oneDimY = 4
ax2.plot(np.arange(0,oneDimX,1),oneDim)
ax2.set_yticks(np.arange(0,oneDimY+1,1))
ax2.set_yticklabels(np.arange(0,oneDimY+1,1))
If I only run everything up to the last line, I get my array fully visualised:
However, if I add a second y axis (ax2=ax1.twinx()) as preparation for the scatterplot, it changes to this incomplete rendering:
What's the problem? I've left a few lines in the code above describing the addition of the scatterplot, although it doesn't seem to be part of the issue.
Following the GitHub discussion which Thomas Kuehn has pointed at, the issue has been fixed few days ago. In the absence of a readily available built, here's a fix using the aspect='auto' property. In order to get nice regular boxes, I adjusted the figure x/y using the array dimensions. The axis autoscale feature has been used to remove some additional white border.
oneDim = np.array([0.5,1,2.5,3.7])
twoDim = np.random.rand(8,4)
plt.figure(figsize=(twoDim.shape[1]/2,twoDim.shape[0]/2))
ax1 = plt.gca()
ax1.imshow(twoDim, cmap='Purples', interpolation='nearest', aspect='auto')
ax1.set_xticks(np.arange(0,twoDim.shape[1],1))
ax1.set_yticks(np.arange(0,twoDim.shape[0],1))
ax1.set_yticklabels(np.arange(0,twoDim.shape[0],1))
ax1.grid()
ax2 = ax1.twinx()
#Required to remove some white border
ax1.autoscale(False)
ax2.autoscale(False)
Result:
I'm having trouble giving colorbars to a grid of line plots in Matplotlib.
I have a grid of plots, which each shows 64 lines. The lines depict the penalty value vs time when optimizing the same system under 64 different values of a certain hyperparameter h.
Since there are so many lines, instead of using a standard legend, I'd like to use a colorbar, and color the lines by the value of h. In other words, I'd like something that looks like this:
The above was done by adding a new axis to hold the colorbar, by calling figure.add_axes([0.95, 0.2, 0.02, 0.6]), passing in the axis position explicitly as parameters to that method. The colorbar was then created as in the example code here, by instantiating a ColorbarBase(). That's fine for single plots, but I'd like to make a grid of plots like the one above.
To do this, I tried doubling the number of subplots, and using every other subplot axis for the colorbar. Unfortunately, this led to the colorbars having the same size/shape as the plots:
Is there a way to shrink just the colorbar subplots in a grid of subplots like the 1x2 grid above?
Ideally, it'd be great if the colorbar just shared the same axis as the line plot it describes. I saw that the colorbar.colorbar() function has an ax parameter:
ax
parent axes object from which space for a new colorbar axes will be stolen.
That sounds great, except that colorbar.colorbar() requires you to pass in a imshow image, or a ContourSet, but my plot is neither an image nor a contour plot. Can I achieve the same (axis-sharing) effect using ColorbarBase?
It turns out you can have different-shaped subplots, so long as all the plots in a given row have the same height, and all the plots in a given column have the same width.
You can do this using gridspec.GridSpec, as described in this answer.
So I set the columns with line plots to be 20x wider than the columns with color bars. The code looks like:
grid_spec = gridspec.GridSpec(num_rows,
num_columns * 2,
width_ratios=[20, 1] * num_columns)
colormap_type = cm.cool
for (x_vec_list,
y_vec_list,
color_hyperparam_vec,
plot_index) in izip(x_vec_lists,
y_vec_lists,
color_hyperparam_vecs,
range(len(x_vecs))):
line_axis = plt.subplot(grid_spec[grid_index * 2])
colorbar_axis = plt.subplot(grid_spec[grid_index * 2 + 1])
colormap_normalizer = mpl.colors.Normalize(vmin=color_hyperparam_vec.min(),
vmax=color_hyperparam_vec.max())
scalar_to_color_map = mpl.cm.ScalarMappable(norm=colormap_normalizer,
cmap=colormap_type)
colorbar.ColorbarBase(colorbar_axis,
cmap=colormap_type,
norm=colormap_normalizer)
for (line_index,
x_vec,
y_vec) in zip(range(len(x_vec_list)),
x_vec_list,
y_vec_list):
hyperparam = color_hyperparam_vec[line_index]
line_color = scalar_to_color_map.to_rgba(hyperparam)
line_axis.plot(x_vec, y_vec, color=line_color, alpha=0.5)
For num_rows=1 and num_columns=1, this looks like: