Could someone explain the difference between % in SQL?
I understand that % is a wildcard that allows you to query results with LIKE results, i.e. a% for words starting with a, but I am confused why the wildcard can be used as % 2 = 0 to query for even numbers?
I saw an explanation that said % can be used as divide but I thought / was divide.
a % 2 = 0 here % as Modulus arithmetic operator.
Syntax: dividend % divisor
Sample: SELECT 15 % 2 AS Remainder it will return the result as 1
Demo on db<>fiddle
When used outside of a string, the percentage symbol % is the modulus operator, i.e. an operator which returns the remainder following division of the number preceding the operator by that following it.
Therefore, in your example, the expression % 2 = 0 will be validated if the number preceding the percentage symbol is even, e.g. 12 % 2 = 0 will return True.
Whereas, when used in the pattern argument of a like expression, the percentage symbol represents a wildcard operator matching any sequence of characters (or no characters at all).
Let's understand with an example:
I have created an Table name - 'c', which contain 2 attribute 'name' and 'num'.
when num%10 is calculated e.g. 55%10 -> gives 5.
If result is either 2 or 7 then it will not print that row
Elseif result (num%10) is NOT 2 or 7 then in this case it will print the row.
Now:
Select *from c where num%10 NOT In(2,7);
Check out Screenshot here :enter image description here
Related
Is there any way to filter rows of a table where a numeric column contains a digit using maths?
I mean, currently, I'm solving that using:
where cast(t.numeric_column as varchar(255)) like "%2%"
However, I would like to know if could be possible to filter apply numeric operations...
Any ideas?
You could use division plus the modulus, if you knew the range of possible numbers. For example, assuming all expected numbers were positive and less than 100,000, you could use:
SELECT *
FROM yourTable
WHERE numeric_column % 10 = 2 OR
(numeric_column / 10) % 10 = 2 OR
(numeric_column / 100) % 10 = 2 OR
(numeric_column / 1000) % 10 = 2 OR
(numeric_column / 10000) % 10 = 2;
Although the above is ugly and unwieldy, it might actually outperform your approach which requires a costly conversion to string.
I am declaring a variable with inline declaration 50 * ( 2 / 5 ). The problem is that output result is 0 instead of expected 20.
DATA(exact_result) = 50 * ( 2 / 5 ) .
cl_demo_output=>display( exact_result ).
Can anyone suggest why the result is zero where as 50 * (2/5) = 20.
regards,
Umar Abdullah
The inline declaration assigns a data type depending on the type from the Right-Hand Side (RHS) expression. With an arithmetic expression, the compiler determines a data type based on the overall calculation type.
First, 2 and 5 are considered as type I (4 bytes integer), so the result is also of type I even if the operator is a division (integer division in that precise case).
Then, 50 is also considered as type I, and because it's used with another I-type data object (result of subexpression 2 / 5 which is of type I) the result is also of type I.
So, in your example, EXACT_RESULT is assigned the type I.
At run time, because both LHS and RHS data objects are of type I, then the calculation type is I too. Consequently, 2 / 5 equals 0.4 which is rounded to 0 because it's an integer division and the default ABAP rounding is "half up" (rounding of 0.4 gives 0, but 0.5 gives 1).
The workaround is to define explicitly the data type of EXACT_RESULT as having digits after the decimal point (DECFLOAT16, DECFLOAT34, P type with decimals, F and even C because then the calculation type is P !), because the type of the LHS will have a higher priority than the type of the RHS (I), so the calculation will be deduced from the type of the LHS variable.
DATA(exact_result) = CONV decfloat16( 50 * ( 2 / 5 ) ).
Be careful with this next solution : as I said, C leads to a calculation with type P and many decimals, so we could think this example is a good solution :
DATA(exact_result) = '50' * ( 2 / 5 ). " equals 20
But with inline declarations, a P calculation type leads to a data object of type P but with 0 digits after the decimal point, so the result is truncated with other numbers (8 instead of 50 here) :
DATA(exact_result) = '8' * ( 2 / 5 ). " rounded ! (3 instead of 3.2)
I have a bit of math question for my sql code. I want to be able to work out the following in my code using a mathematical formula, if anyone knows how I would love to know.
Any number 1->99 : 10
Any number 100->999 : 100
Any number 1000->9999 : 1000
...
Is there anyway to work out the 10 multiplier just from the value? I feel like this should be an easy formula but I cant seem to get it.
Thanks
How about this?
SELECT POWER(10, CONVERT(INT, LOG10(#Input)))
It takes the log base 10 of the input value (which returns the value of the exponent to which you would have to raise 10 to in order to get the input value), then it lops off the decimal portion leaving only the whole number, and then raises 10 to that power.
You just need logs and their opposite (power)...
power(10, floor(log10(x)))
As follows...
log10(99) = 1.9956351946
floor(1.9956351946) = 1
power(10, 1) = 10
This does, however, assume that your example is wrong and that 1 -> 9 should "round" to 1...
log10(9) = 0.95424250943
floor(0.95424250943) = 0
power(10, 0) = 1
I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.
So I thought that negative numbers, when mod'ed should be put into positive space... I cant get this to happen in objective-c
I expect this:
-1 % 3 = 2
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
But get this
-1 % 3 = -1
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
Why is this and is there a workaround?
result = n % 3;
if( result < 0 ) result += 3;
Don't perform extra mod operations as suggested in the other answers. They are very expensive and unnecessary.
In C and Objective-C, the division and modulus operators perform truncation towards zero. a / b is floor(a / b) if a / b > 0, otherwise it is ceiling(a / b) if a / b < 0. It is always the case that a == (a / b) * b + (a % b), unless of course b is 0. As a consequence, positive % positive == positive, positive % negative == positive, negative % positive == negative, and negative % negative == negative (you can work out the logic for all 4 cases, although it's a little tricky).
If n has a limited range, then you can get the result you want simply by adding a known constant multiple of 3 that is greater that the absolute value of the minimum.
For example, if n is limited to -1000..2000, then you can use the expression:
result = (n+1002) % 3;
Make sure the maximum plus your constant will not overflow when summed.
We have a problem of language:
math-er-says: i take this number plus that number mod other-number
code-er-hears: I add two numbers and then devide the result by other-number
code-er-says: what about negative numbers?
math-er-says: WHAT? fields mod other-number don't have a concept of negative numbers?
code-er-says: field what? ...
the math person in this conversations is talking about doing math in a circular number line. If you subtract off the bottom you wrap around to the top.
the code person is talking about an operator that calculates remainder.
In this case you want the mathematician's mod operator and have the remainder function at your disposal. you can convert the remainder operator into the mathematician's mod operator by checking to see if you fell of the bottom each time you do subtraction.
If this will be the behavior, and you know that it will be, then for m % n = r, just use r = n + r. If you're unsure of what will happen here, use then r = r % n.
Edit: To sum up, use r = ( n + ( m % n ) ) % n
I would have expected a positive number, as well, but I found this, from ISO/IEC 14882:2003 : Programming languages -- C++, 5.6.4 (found in the Wikipedia article on the modulus operation):
The binary % operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined
JavaScript does this, too. I've been caught by it a couple times. Think of it as a reflection around zero rather than a continuation.
Why: because that is the way the mod operator is specified in the C-standard (Remember that Objective-C is an extension of C). It confuses most people I know (like me) because it is surprising and you have to remember it.
As to a workaround: I would use uncleo's.
UncleO's answer is probably more robust, but if you want to do it on a single line, and you're certain the negative value will not be more negative than a single iteration of the mod (for example if you're only ever subtracting at most the mod value at any time) you can simplify it to a single expression:
int result = (n + 3) % 3;
Since you're doing the mod anyway, adding 3 to the initial value has no effect unless n is negative (but not less than -3) in which case it causes result to be the expected positive modulus.
There are two choices for the remainder, and the sign depends on the language. ANSI C chooses the sign of the dividend. I would suspect this is why you see Objective-C doing so also. See the wikipedia entry as well.
Not only java script, almost all the languages shows the wrong answer'
what coneybeare said is correct, when we have mode'd we have to get remainder
Remainder is nothing but which remains after division and it should be a positive integer....
If you check the number line you can understand that
I also face the same issue in VB and and it made me to forcefully add extra check like
if the result is a negative we have to add the divisor to the result
Instead of a%b
Use: a-b*floor((float)a/(float)b)
You're expecting remainder and are using modulo. In math they are the same thing, in C they are different. GNU-C has Rem() and Mod(), objective-c only has mod() so you will have to use the code above to simulate rem function (which is the same as mod in the math world, but not in the programming world [for most languages at least])
Also note you could define an easy to use macro for this.
#define rem(a,b) ((int)(a-b*floor((float)a/(float)b)))
Then you could just use rem(-1,3) in your code and it should work fine.