should the "midpoint" location of binary search alway be at 1/2? - binary-search

In the native binary search, we choose 1/2 as the midpoint to cut off half of the "workload" in linear search and the possible answers. However, if the time complexity of the check_mid(mid) function is not fixed, will 1/2 still be a fair point for the search?
For example, In the problem of finding the first bad version. let's say the time complexity of the check_mid(mid) is O(mid), the length of the array is N. When we set the midpoint at 1/2, the time complexity of linear searching the left part would be 1/8 * N^2, and the right part would be 3/8 * N^2. So, in the aspect of "workload", the division is not fair, will a factor which bigger than 1/2 be a better midpoint in this situation(1/sqrt(2) or 2/3)?
In short, my confusion is that we get rid of half of the possible cases or the cases hold half of the "workload"? Let's say the "workload"-T means linearly checking all the possible cases. If we cut off half of T in each recursion, the worst time complexity would be log2(T). But if we cut off half of the possible cases, the worst time complexity would not be log2(T) when the check_mid(mid) function is not fixed.
Is there a more efficient search factor than midpoint for binary search?
this question is similar but its answer didn't take the time complexity of check_mid(mid) into consideration.

If you know ahead something about distribution, maybe you could find a better pivot, otherwise 1/2 think is the best for something randomly [1,3,8,11,23..].Never know in which half will be and maybe in particular cases other pivot will be faster but overall the time is not the best.[for all searches].In most of the cases binary-search is applied on unknown sequence. For a known distribution:exponential-grow [1 3 9 27 81 ...] it's obvious that very-very lower values will be near the start(or in 1/3) so 1/3 could be fine for lower values and 2/3 for higher values. But even here, after a few iterations is hardly to made any assumption in which half it's "probably" to be (so maybe changing again the pivot to 1/2 will give a better time). The solution here is based on "good chance to guess the right half [the one with less items]" for a few iterations based on known distribution.

Related

Time complexity with respect to input

This is a constant doubt I'm having. For example, I have a 2-d array of size n^2 (n being the number of rows and columns). Suppose I want to print all the elements of the 2-d array. When I calculate the time complexity of the algorithm with respect to n it's O(n^2 ). But if I calculated the time with respect to the input size (n^2 ) it's linear. Are both these calculations correct? If so, why do people only use O(n^2 ) everywhere regarding 2-d arrays?
That is not how time complexity works. You cannot do "simple math" like that.
A two-dimensional square array of extent x has n = x*x elements. Printing these n elements takes n operations (or n/m if you print m items at a time), which is O(N). The necessary work increases linearly with the number of elements (which is, incidentially, quadratic in respect of the array extent -- but if you arranged the same number of items in a 4-dimensional array, would it be any different? Obviously, no. That doesn't magically make it O(N^4)).
What you use time complexity for is not stuff like that anyway. What you want time complexity to tell you is an approximate idea of how some particular algorithm may change its behavior if you grow the number of inputs beyond some limit.
So, what you want to know is, if you do XYZ on one million items or on two million items, will it take approximately twice as long, or will it take approximately sixteen times as long, for example.
Time complexity analysis is irrespective of "small details" such as how much time an actual operations takes. Which tends to make the whole thing more and more academic and practically useless in modern architectures because constant factors (such as memory latency or bus latency, cache misses, faults, access times, etc.) play an ever-increasing role as they stay mostly the same over decades while the actual cost-per-step (instruction throughput, ALU power, whatever) goes down steadily with every new computer generation.
In practice, it happens quite often that the dumb, linear, brute force approach is faster than a "better" approach with better time complexity simply because the constant factor dominates everything.

Numerical Accuracy: to scale or not?

I am working on a n-body gravitational simulator that takes input and produces output in metric MKS units. This involves dealing with some very large numbers (like solar masses expressed in kilograms, semimajor axes of planetary orbits expressed in meters, and timescales of years expressed in seconds), which get multiplied by some very small numbers (notably, the gravitational constant, which is 6.67384e-11 in MKS units), and also the occasional very small number getting added to or subtracted from a very large number (mainly when summing up pairwise accelerations), which gets me concerned about the effects of rounding errors.
I've already taken the step of replacing all masses m by Gm (premultiplying by the gravitational constant), which significantly reduces the total number of multiplies, and makes the mass numbers much smaller, and that seems to have had a positive effect on both efficiency and accuracy, as judged by how well the simulator conserves energy.
I am wondering, however: is potentially it worth trying to do some internal re-scaling into different units to further minimize floating point errors? And if so, what kind of range (for double-precision floats) should I be trying to get my numbers centered on for maximum accuracy?
In general if you want precise results in physical based rendering you don't want to use floats or doubles since they have massive rounding problems and thus introduce errors in your simulation.
If you need or want to stick with floats/double you probably should rescale around zero. The reason is that often floating point representations have a higher "density" of values around this point and tend to have fewer on the min/max sides. Image example from google
I would suggest that you change all values to integer based number variables. This erases rounding errors (over/underflow can still happen!) and speeds up the calculation process by an order of magnitude because normal CPUs work faster with integer operations. In case of GPU its basically the same but thats another story all by its own...
But before you take such an effort to further improve your accuracy i would strongly advise an arbitrary precision number library. This may come with an performance loss but should be way easier and yield better results than a rescaling of your values.
Most of the numerical mathematicians come across this problem.
At first let me remind you that you can not deal with numbers (or phsycal values) smaller than the machine epsilon for each calculation. Unfortunately the epsilon depends around which number you are analyzing. You can try eps(a) for any value of a in MATLAB, as far as I remember eps(1.0)~=2.3e-16 and eps(0)~1e-298.
That's why in numerical methods you avoid calculations using very different scaled numbers. Because one is just an ignored (smaller than its epsilon) by the other value and rounding errors are inevitable.
But what else people do? If they encounter such physical problems, before coding, mathematicians analyse the problem theoritically, they make simplifications to use similarly scaled numbers.

Combinatorial optimization for puzzle solving

My problem is explained in the following image
http://i.stack.imgur.com/n6mZt.png
I have a finite (but rather large) amount of such pieces that need to be stacked in a way so that the REMAINING area is the smallest possible. The pieces are locked in the horizontal axis (time) and have fixed height. They can only be stacked.
The remaining area is defined by the maximum point of the stack that depends on which pieces have been selected. The best combination in the example image would be the [1 1 0]. (The trivial [0 0 0] case will not be allowed by other constraints)
My only variables are binaries (Yes or No) for each piece. The objective is a little more complicated than what I am describing, but my greatest problem right now is how to formulate the expression
Max{Stacked_Pieces} - Stacked_Pieces_Profile
in the objective function. The result of this expression is a vector of course (timeseries) but it will be further reduced to a number through other manipulations.
Essentially my problem is how to write
Max{A} - A, where A = 1xN vector
In a way compatible with a linear (or even quadratic) objective. Or am I dealing with a non-linear problem?
EDIT: The problem is like a Knapsack problem the main difference being that there is no knapsack to fill up. i.e. the size of the knapsack varies according to the selected pieces and is always equal to the top of the stacked profile
Thanks everybody!
From what I understand you can basically try to solve it as a normal knapsack problem in multiple iterations, finding the minimal.
Now, finding the height of the knapsack is a problem, which means you need multiple iterations. Because you need to solve the knapsack problem to see if a certain height will work, you need multiple iterations.
Note that you do know an upper and a lower bound for the height. I'm not sure if rotation is applicable, but you can fill in the gaps here:
Min = max(max height of smallest piece, total size / width)
Max = sum(height of all pieces).
Basically solving it means finding the smallest height [Min <= x <= Max] that fits all pieces. The easiest way to do that is by using a 'for' loop, but you can do it better:
Try min, max, half
if half fits -> max = half; iterate (goto 1)
if half doesn't fit -> min = half; iterate (goto 1)
As for solving the knapsack problem, for each iteration, I'd check if all pieces can still be fitted. Use bit-masks and AND/OR/XOR operations if you can to speed things up.
Basically you can do it like this:
Grab bit 'x'. Fill with next block
Check if this leads to a possible solution
Find next bit that can be filled
Note that you might want to use intrinsics in C++ to speed this up. Modern CPU's are quite good with this.
As for code: I've made some code that solves the bedlam cube in the past; I'm pretty sure that if you google for that, you'll find some fast solvers.
Good luck!

Is multiplying y by 2^x and subtracting y faster that multiplying y by [(2^x)-1] directly?

I have a rather theoretical question:
Is multiplying y by 2^x and subtracting y faster than
multiplying y by [(2^x)-1] directly?
(y*(2^x) - y) vs (y*((2^x)-1))
I implemented a moving average filter on some data I get from a sensor. The basic idea is that I want to average the last 2^x values by taking the old average, multiplying that by [(2^x)-1], adding the new value, and dividing again by 2^x. But because I have to do this more than 500 times a second, I want to optimize it as much as possible.
I know that floating point numbers are represented in IEEE754 and therefore, multiplying and dividing by a power of 2 should be rather fast (basically just changing the mantissa), but how to do that most efficiently? Should I simply stick with just multiplying ((2^x)-1), or is multiplying by 2.0f and subtracting y better, or could I even do that more efficiently by performing a leftshift on the mantissa? And if that is possible, how to implement that properly?
Thank you very much!
I don't think that multiplying a floating-point number by a power of two is faster in practice than a generic multiplication (though I agree that in theory it should be faster, assuming no overflow/underflow). Said otherwise, I don't think that there is a hardware optimization.
Now, I can assume that you have a modern processor, i.e. with a FMA. In this case, (y*(2^x) - y) is faster if performed as fma(y,2^x,-y) (the way you have to write the expression depends on your language and implementation): a FMA should be as fast as a multiplication in practice.
Note also that the speed may also depend on the context. For instance, I've observed on simple code that doing more work can surprisingly yield faster code! So, you need to test (on your real code, not with an arbitrary benchmark).

does every algorithm have Big Omega?

does every algorithm have Big Omega?
Is it possible for algorithms to have both Big O and Big Omega (but not equal to each other- not Big Theta) ?
For instance Quicksort's Big O - O(n log n) But does it have Big Omega? If it does, how do i calculate it?
First, it is of paramount importance that one not confuse the bound with the case. A bound - like Big-Oh, Big-Omega, Big-Theta, etc. - says something about a rate of growth. A case says something about the kinds of input you're currently considering being processed by your algorithm.
Let's consider a very simple example to illustrate the distinction above. Consider the canonical "linear search" algorithm:
LinearSearch(list[1...n], target)
1. for i := 1 to n do
2. if list[i] = target then return i
3. return -1
There are three broad kinds of cases one might consider: best, worst, and average cases for inputs of size n. In the best case, what you're looking for is the first element in the list (really, within any fixed number of the start of the list). In such cases, it will take no more than some constant amount of time to find the element and return from the function. Therefore, the Big-Oh and Big-Omega happen to be the same for the best case: O(1) and Omega(1). When both O and Omega apply, we also say Theta, so this is Theta(1) as well.
In the worst case, the element is not in the list, and the algorithm must go through all n entries. Since f(n) = n happens to be a function that is bound from above and from below by the same class of functions (linear ones), this is Theta(n).
Average case analysis is usually a bit trickier. We need to define a probability space for viable inputs of length n. One might say that all valid inputs (where integers can be represented using 32 bits in unsigned mode, for instance) are equally probable. From that, one could work out the average performance of the algorithm as follows:
Find the probability that target is not represented in the list. Multiply by n.
Given that target is in the list at least once, find the probability that it appears at position k for each 1 <= k <= n. Multiply each P(k) by k.
Add up all of the above to get a function in terms of n.
Notice that in step 1 above, if the probability is non-zero, we will definitely get at least a linear function (exercise: we can never get more than a linear function). However, if the probability in step 1 is indeed zero, then the assignment of probabilities in step 2 makes all the difference in determining the complexity: you can have best-case behavior for some assignments, worst-case for others, and possibly end up with behavior that isn't the same as best (constant) or worst (linear).
Sometimes, we might speak loosely of a "general" or "universal" case, which considers all kinds of input (not just the best or the worst), but that doesn't give any particular weighting to inputs and doesn't take averages. In other words, you consider the performance of the algorithm in terms of an upper-bound on the worst-case, and a lower-bound on the best-case. This seems to be what you're doing.
Phew. Now, back to your question.
Are there functions which have different O and Omega bounds? Definitely. Consider the following function:
f(n) = 1 if n is odd, n if n is even.
The best case is "n is odd", in which case f is Theta(1); the worst case is "n is even", in which case f is Theta(n); and if we assume for the average case that we're talking about 32-bit unsigned integers, then f is Theta(n) in the average case, as well. However, if we talk about the "universal" case, then f is O(n) and Omega(1), and not Theta of anything. An algorithm whose runtime behaves according to f might be the following:
Strange(list[1...n], target)
1. if n is odd then return target
2. else return LinearSearch(list, target)
Now, a more interesting question might be whether there are algorithms for which some case (besides the "universal" case) cannot be assigned some valid Theta bound. This is interesting, but not overly so. The reason is that you, during your analysis, are allowed to choose the cases that constitutes best- and worst-case behavior. If your first choice for the case turns out not to have a Theta bound, you can simply exclude the inputs that are "abnormal" for your purposes. The case and the bound aren't completely independent, in that sense: you can often choose a case such that it has "good" bounds.
But can you always do it?
I don't know, but that's an interesting question.
Does every algorithm have a Big Omega?
Yes. Big Omega is a lower bound. Any algorithm can be said to take at least constant time, so any algorithm is Ω(1).
Does every algorithm have a Big O?
No. Big O is a upper bound. Algorithms that don't (reliably) terminate don't have a Big O.
An algorithm has an upper bound if we can say that, in the absolute worst case, the algorithm will not take longer than this. I'm pretty sure O(∞) is not valid notation.
When will the Big O and Big Omega of an algorithm be equal?
There is actually a special notation for when they can be equal: Big Theta (Θ).
They will be equal if the algorithm scales perfectly with the size of the input (meaning there aren't input sizes where the algorithm is suddenly a lot more efficient).
This is assuming we take Big O to be the smallest possible upper bound and Big Omega to be the largest possible lower bound. This is not actually required from the definition, but they're commonly informally treated as such. If you drop this assumption, you can find a Big O and Big Omega that aren't equal for any algorithm.
Brute force prime number checking (where we just loop through all smaller numbers and try to divide them into the target number) is perhaps a good example of when the smallest upper bound and largest lower bound are not equal.
Assume you have some number n. Let's also for the time being ignore the fact that bigger numbers take longer to divide (a similar argument holds when we take this into account, although the actual complexities would be different). And I'm also calculating the complexity based on the number itself instead of the size of the number (which can be the number of bits, and could change the analysis here quite a bit).
If n is divisible by 2 (or some other small prime), we can very quickly check whether it's prime with 1 division (or a constant number of divisions). So the largest lower bound would be Ω(1).
Now if n is prime, we'll need to try to divide n by each of the numbers up to sqrt(n) (I'll leave the reason we don't need to go higher than this as an exercise). This would take O(sqrt(n)), which would also then be our smallest upper bound.
So the algorithm would be Ω(1) and O(sqrt(n)).
Exact complexity also may be hard to calculate for some particularly complex algorithms. In such cases it may be much easier and acceptable to simply calculate some reasonably close lower and upper bounds and leave it at that. I don't however have an example on hand for this.
How does this relate to best case and worst case?
Do not confuse upper and lower bounds for best and worst case. This is a common mistake, and a bit confusing, but they're not the same. This is a whole other topic, but as a brief explanation:
The best and worst (and average) cases can be calculated for every single input size. The upper and lower bounds can then be used for each of those 3 cases (separately). You can think of each of those cases as a line on a graph with input size on the x-axis and time on the y-axis and then, for each of those lines, the upper and lower bounds are lines which need to be strictly above or below that line as the input size tends to infinity (this isn't 100% accurate, but it's a good basic idea).
Quick-sort has a worst-case of Θ(n2) (when we pick the worst possible pivot at every step) and a best-case of Θ(n log n) (when we pick good pivots). Note the use of Big Theta, meaning each of those are both lower and upper bounds.
Let's compare quick-sort with the above prime checking algorithm:
Say you have a given number n, and n is 53. Since it's prime, it will (always) take around sqrt(53) steps to determine whether it's prime. So the best and worst cases are all the same.
Say you want to sort some array of size n, and n is 53. Now those 53 elements can be arranged such that quick-sort ends up picking really bad pivots and run in around 532 steps (the worst case) or really good pivots and run in around 53 log 53 steps (the best case). So the best and worst cases are different.
Now take n as 54 for each of the above:
For prime checking, it will only take around 1 step to determine that 54 is prime. The best and worst cases are the same again, but they're different from what they were for 53.
For quick-sort, you'll again have a worst case of around 542 steps and a best case of around 54 log 54 steps.
So for quick-sort the worst case always takes around n2 steps and the best case always takes around n log n steps. So the lower and upper (or "tight") bound of the worst case is Θ(n2) and the tight bound of the best case is Θ(n log n).
For our prime checking, sometimes the worst case takes around sqrt(n) steps and sometimes it takes around 1 step. So the lower bound for the worse case would be Ω(1) and upper bound would be O(sqrt(n)). It would be the same for the best case.
Note that above I simply said "the algorithm would be Ω(1) and O(sqrt(n))". This is slightly ambiguous, as it's not clear whether the algorithm always takes the same amount of time for some input size, or the statement is referring to one of the best, average or worst case.
How do I calculate this?
It's hard to give general advice for this since proofs of bounds are greatly dependent on the algorithm. You'd need to analyse the algorithm similar to what I did above to figure out the worst and best cases.
Big O and Big Omega it can be calculated for every algorithm as you can see in Big-oh vs big-theta