Customize Input to Tensorflow Hub module - tensorflow

I know how to load a pre-trained image models from Tensorflow Hub. like so:
#load model
image_module = hub.Module('https://tfhub.dev/google/imagenet/mobilenet_v2_035_128/feature_vector/2')
#get predictions
features = image_module(batch_images)
I also know how to customize the output of this model (fine-tune on new dataset). The existing Modules expect input batch_images to be a RGB image tensor.
My question: Instead of the input being a RGB image of certain dimensions, I would like to use a tensor (dim 20x20x128, from a different model) as input to the Hub model. This means I need to by-passing the initial layers of the tf-hub model definition (i don't need them). Is this possible in tf-hub module api's? Documentation is not clear on this aspect.
p.s.: I can do this easily be defining my own layers but trying to see if i can use the Tf-Hub API's.

The existing https://tfhub.dev/google/imagenet/... modules do not support this.
Generally speaking, the hub.Module format allows multiple signatures (that is, combinations of input/output tensors; think feeds and fetches as in tf.Session.run()). So module publishers can arrange for that if there is a common usage pattern they want to support.
But for free-form experimentation at this level of sophistication, you are probably better off directly using and tweaking the code that defines the models, such as TF Slim (for TF1.x) or Keras Applications (also for TF2). Both provide Imagenet-pretrained checkpoints for downloading and restoring on the side.

Related

Inspecting functional keras model structure

I would like to inspect the layers and connections in a model, after having created a model using the Functional API in Keras. Essentially to start at the output and recursively enumerate the inputs of each layer instance. Is there a way to do this in the Keras or TensorFlow API?
The purpose is to create a more detailed visualisation than the ones provided by Keras (tf.keras.utils.plot_model). The model is generated procedurally based on a parameter file.
I have successfully used attributes of the KerasTensor objects to do this inspection:
output = Dense(1)(...)
print(output)
print(output.node)
print(output.node.keras_inputs)
print(output.node.keras_inputs[0].node)
This wasn't available in TF 2.6, only 2.7, and I realise it's not documented anywhere.
Is there a proper way to do this?

Tensorflow: Does a tflite file contain data about the model architecture? (graph?)

Does a tflite file contain data about the model architecture? A graph that shows what operations there where between the weights and features and biases, what kind of layers (linear or convolutional etc), size of layers, and what activation functions are there in-between the layers?
For example a graph you get with graphviz, that contains all the information, or does a tflite file only contain the final weights of the model after training?
I am working on a project with image style transfer. I wanted to do some research on an existing project, and see what parameters work better. The project I am looking at is here:
https://tfhub.dev/sayakpaul/lite-model/arbitrary-image-stylization-inceptionv3-dynamic-shapes/int8/transfer/1
I can download a tflite file, but I don't know much about these files. If they have the architecture I need, how do I read it?
TFLite flatbuffer files contain the model structure as well. For example, there are a subgraph concept in TFLite, which corresponds to the function concept in the programming language and the operator nodes also represent a graph node, which takes inputs and generates outputs. By using the Netron application, the model architecture can be visualized.

How to extract weights of DQN agent in TF-Agents framework?

I am using TF-Agents for a custom reinforcement learning problem, where I train a DQN (constructed using DqnAgents from the TF-Agents framework) on some features from my custom environment, and separately use a keras convolutional model to extract these features from images. Now I want to combine these two models into a single model and use transfer learning, where I want to initialize the weights of the first part of the network (images-to-features) as well as the second part which would have been the DQN layers in the previous case.
I am trying to build this combined model using keras.layers and compiling it with the Tf-Agents tf.networks.sequential class to bring it to the necessary form required when passing it to the DqnAgent() class. (Let's call this statement (a)).
I am able to initialize the image feature extractor network's layers with the weights since I saved it as a .h5 file and am able to obtain numpy arrays of the same. So I am able to do the transfer learning for this part.
The problem is with the DQN layers, where I saved the policy from the previous example using the prescribed Tensorflow Saved Model Format (pb) which gives me a folder containing model attributes. However, I am unable to view/extract the weights of my DQN in this way, and the recommended tf.saved_model.load('policy_directory') is not really transparent with respect to what data I can see regarding the policy. If I have to follow the transfer learning as I do in statement (a), I need to extract the weights of my DQN and assign them to the new network. The documentation seems to be quite sparse for this case where transfer learning needs to be applied.
Can anyone help me in this, by explaining how I can extract weights from the Saved Model method (from the pb file)? Or is there a better way to go about this problem?

Where are the filter image data in this TensorFlow example?

I'm trying to consume this tutorial by Google to use TensorFlow Estimator to train and recognise images: https://www.tensorflow.org/tutorials/estimators/cnn
The data I can see in the tutorial are: train_data, train_labels, eval_data, eval_labels:
((train_data,train_labels),(eval_data,eval_labels)) =
tf.keras.datasets.mnist.load_data();
In the convolutional layers, there should be feature filter image data to multiply with the input image data? But I don't see them in the code.
As from this guide, the input image data matmul with filter image data to check for low-level features (curves, edges, etc.), so there should be filter image data too (the right matrix in the image below)?: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks
The filters are the weight matrices of the Conv2d layers used in the model, and are not pre-loaded images like the "butt curve" you gave in the example. If this were the case, we would need to provide the CNN with all possible types of shapes, curves, colours, and hope that any unseen data we feed the model contains this finite sets of images somewhere in them which the model can recognise.
Instead, we allow the CNN to learn the filters it requires to sucessfully classify from the data itself, and hope it can generalise to new data. Through multitudes of iterations and data( which they require a lot of), the model iteratively crafts the best set of filters for it to succesfully classify the images. The random initialisation at the start of training ensures that all filters per layer learn to identify a different feature in the input image.
The fact that earlier layers usually corresponds to colour and edges (like above) is not predefined, but the network has realised that looking for edges in the input is the only way to create context in the rest of the image, and thereby classify (humans do the same initially).
The network uses these primitive filters in earlier layers to generate more complex interpretations in deeper layers. This is the power of distributed learning: representing complex functions through multiple applications of much simpler functions.

Using TensorFlow object detection API models at prediction

I have used the TensorFlow object detection API to train the SSD Inception model from scratch. The evaluation script shows that the model has learned something and now I want to use the model.
I have looked at the object detection ipynb that can feed single images to a trained model. However, this is for SSD with MobileNet. I have used the following line (after loading the meta graph) to print the tensor names of the TensorFlow model I trained.
print([str(op.name) for op in tf.get_default_graph().get_operations()] )
But it does not contain the same input or output tensor names as in the ipynb. I have also searched through the code, but many functions point toward each other and it is difficult to find what I am looking for.
How can I find the tensor names I need? Or is there another method I do not know about?
To use the graph, you need to freeze/export it, using this provided script. The resulting .pb file will contain the nodes you need. I don't know why it's organized like that, but it is.