import numpy as np
from matplotlib import pyplot as plt
data = np.array([[0.8, 2.4, 2.5, 3.9, 0.0, 4.0, 0.0],
[2.4, 0.0, 4.0, 1.0, 2.7, 0.0, 0.0],
[1.1, 2.4, 0.8, 4.3, 1.9, 4.4, 0.0],
[0.6, 0.0, 0.3, 0.0, 3.1, 0.0, 0.0],
[0.7, 1.7, 0.6, 2.6, 2.2, 6.2, 0.0],
[1.3, 1.2, 0.0, 0.0, 0.0, 3.2, 5.1],
[0.1, 2.0, 0.0, 1.4, 0.0, 1.9, 6.3]])
plt.figure(figsize=(6, 4))
im = plt.imshow(data, cmap="YlGn")
linewidth = 2
for axis in ['top', 'bottom', 'left', 'right']:
plt.gca().spines[axis].set_linewidth(linewidth)
plt.gca().set_xticks(np.arange(data.shape[1] + 1) - .5, minor=True)
plt.gca().set_yticks(np.arange(data.shape[0] + 1) - .5, minor=True)
plt.gca().grid(which="minor", color="black", linewidth=linewidth)
plt.gca().tick_params(which="minor", bottom=False, left=False)
plt.tight_layout()
plt.gca().set_xticks(ticks=[])
plt.gca().set_yticks(ticks=[])
plt.savefig("test.pdf",
bbox_inches="tight",
transparent="True",
pad_inches=1.0/72.0 * linewidth / 2.0)
This code will output the following pdf, but you can see that there are white borders on the left and bottom, so the pdf is not centered after being inserted into LaTex. How to solve this problem?
plt result:
import numpy as np
from matplotlib import pyplot as plt
data = np.array([[0.8, 2.4, 2.5, 3.9, 0.0, 4.0, 0.0],
[2.4, 0.0, 4.0, 1.0, 2.7, 0.0, 0.0],
[1.1, 2.4, 0.8, 4.3, 1.9, 4.4, 0.0],
[0.6, 0.0, 0.3, 0.0, 3.1, 0.0, 0.0],
[0.7, 1.7, 0.6, 2.6, 2.2, 6.2, 0.0],
[1.3, 1.2, 0.0, 0.0, 0.0, 3.2, 5.1],
[0.1, 2.0, 0.0, 1.4, 0.0, 1.9, 6.3]])
plt.figure(figsize=(6, 4))
im = plt.imshow(data, cmap="YlGn")
linewidth = 2
for axis in ['top', 'bottom', 'left', 'right']:
plt.gca().spines[axis].set_linewidth(linewidth)
plt.gca().set_xticks(np.arange(data.shape[1] + 1) - .5, minor=True)
plt.gca().set_yticks(np.arange(data.shape[0] + 1) - .5, minor=True)
plt.gca().grid(which="minor", color="black", linewidth=linewidth)
plt.gca().tick_params(which="minor", bottom=False, left=False)
plt.tight_layout()
plt.gca().set_xticks(ticks=[])
plt.gca().set_yticks(ticks=[])
plt.gca().tick_params(axis="both",
which="major",
left=False,
bottom=False,
labelleft=False,
labelbottom=False)
plt.savefig("test.pdf",
bbox_inches="tight",
transparent="True",
pad_inches=1.0 / 72.0 * linewidth / 2.0)
It was an issue with ticks, solved now.
I'm trying to train LSTM model in Keras using data of variable timestep, for example, the data looks like:
<tf.RaggedTensor [[[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
[[1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]], ...,
[[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
[[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0],
[1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]>
and its corresponding label:
<tf.RaggedTensor [[6, 6], [7, 7], [8], ..., [6], [11, 11, 11, 11, 11], [24, 24, 24, 24, 24]]>
Each input data have 13 features, so for each time step, the model receives a 1 x 13 vector. I wonder if it is possible to do so? I don't mind doing this on pytorch either.
I try to align them with no reshape layer.
However, my input for each time step in the LSTM layer is a vector of dimension 13. And each sample has variable-length of these vectors, which means the time step is not constant for each sample. Can you show me a code example of how to train such model? –
TurquoiseJ
First of all, the concept of windows length and time steps is they take the same amount of the input with a higher number of length and time.
We assume the input to extract features can be divide by multiple times of windows travels along with axis, please see the attached for idea.
[Codes]:
batched_features = tf.constant( [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], ], shape=( 2, 1, 13 ) )
batched_labels = tf.constant( [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]], shape=( 2, 13 ) )
dataset = tf.data.Dataset.from_tensor_slices((batched_features, batched_labels))
dataset = dataset.batch(10)
batched_features = dataset
[Sample]:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional (Bidirectiona (None, 1, 64) 11776
l)
bidirectional_1 (Bidirectio (None, 64) 24832
nal)
dense (Dense) (None, 13) 845
=================================================================
Total params: 37,453
Trainable params: 37,453
Non-trainable params: 0
_________________________________________________________________
<BatchDataset element_spec=(TensorSpec(shape=(None, 1, 13), dtype=tf.int32, name=None), TensorSpec(shape=(None, 13), dtype=tf.int32, name=None))>
Epoch 1/100
2022-03-28 05:19:04.116345: I tensorflow/stream_executor/cuda/cuda_dnn.cc:368] Loaded cuDNN version 8100
1/1 [==============================] - 8s 8s/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 2/100
1/1 [==============================] - 0s 38ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Assume each windows consume about 13 level of the input :
batched_features = tf.constant( [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], ], shape=( 2, 1, 13 ) )
batched_labels = tf.constant( [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]], shape=( 2, 13 ) )
Adding more windows is easy by
batched_features = tf.constant( [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], ], shape=( 3, 1, 13 ) )
batched_labels = tf.constant( [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]], shape=( 3, 13 ) )
dataset = tf.data.Dataset.from_tensor_slices((batched_features, batched_labels))
dataset = dataset.batch(10)
batched_features = dataset
At least you tell me what is the purpose they can use reverse windows to have certain results. ( Apmplitues frequency )
The results will look like these for each windows :
[ Output ] : 2 and 3 Windows
# Sequence types with timestep #1:
# <BatchDataset element_spec=(TensorSpec(shape=(None, 1, 13), dtype=tf.int32, name=None), TensorSpec(shape=(None, 13), dtype=tf.int32, name=None))>
# Sequence types with timestep #2:
# <BatchDataset element_spec=(TensorSpec(shape=(None, 1, 13), dtype=tf.int32, name=None), TensorSpec(shape=(None, 13), dtype=tf.int32, name=None))>
[ Result ]:
I am creating a neural network in tensorflow and I have created the placeholders like this:
input_tensor = tf.placeholder(tf.float32, shape = (None,n_input), name = "input_tensor")
output_tensor = tf.placeholder(tf.float32, shape = (None,n_classes), name = "output_tensor")
During the training process, I was getting the following error:
Traceback (most recent call last):
File "try.py", line 150, in <module>
sess.run(optimizer, feed_dict={X: x_train[i: i + 1], Y: y_train[i: i + 1]})
TypeError: unhashable type: 'numpy.ndarray'
I identified that is because of the different datatypes of my x_train and y_train to the datatypes of the placeholders.
My x_train looks somewhat like this:
array([[array([[ 1., 0., 0.],
[ 0., 1., 0.]])],
[array([[ 0., 1., 0.],
[ 1., 0., 0.]])],
[array([[ 0., 0., 1.],
[ 0., 1., 0.]])]], dtype=object)
It was initially a dataframe like this:
0 [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
1 [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]
2 [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
I did x_train = train_x.values to get the numpy array
And y_train looks this:
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
x_train has dtype object and y_train has dtype float64.
What I want to know is that how I can change the datatypes of my training data so that it can work well with the tensorflow placeholders. Or please suggest if I am missing something.
It is little hard to guess what shape you want your data to be, but I am guessing one of the two combinations which you might be looking for. I will also try to simulate your data in Pandas dataframe.
df = pd.DataFrame([[[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
[[[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]]], columns = ['Mydata'])
print(df)
x = df.Mydata.values
print(x.shape)
print(x)
print(x.dtype)
Output:
Mydata
0 [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
1 [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]
2 [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
(3,)
[list([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
list([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]])
list([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]])]
object
Combination 1
y = [item for sub_list in x for item in sub_list]
y = np.array(y, dtype = np.float32)
print(y.dtype, y.shape)
print(y)
Output:
float32 (6, 3)
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 1. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 0. 1. 0.]]
Combination 2
y = [sub_list for sub_list in x]
y = np.array(y, dtype = np.float32)
print(y.dtype, y.shape)
print(y)
Output:
float32 (3, 2, 3)
[[[ 1. 0. 0.]
[ 0. 1. 0.]]
[[ 0. 1. 0.]
[ 1. 0. 0.]]
[[ 0. 0. 1.]
[ 0. 1. 0.]]]
Your x_train is a nested object containing arrays, so you have to unpack it and reshape it. Here's a general purpose hack:
def unpack(a, aggregate=[]):
for x in a:
if type(x) is float:
aggregate.append(x)
else:
unpack(x, aggregate=aggregate)
return np.array(aggregate)
x_train = unpack(x_train.values).reshape(x_train.shape[0],-1)
Once you've got a dense array (y_train is already dense), you can use a function like the following:
def cast(placeholder, array):
dtype = placeholder.dtype.as_numpy_dtype
return array.astype(dtype)
x_train, y_train = cast(X,x_train), cast(Y,y_train)