I've got a TensorFlow 2 model with a pre-trained Keras layer coming from TensorFlow Hub. I want to fine-tune the weights in this sub-model to suit my dataset, but if I do that naively by setting trainable=True and training=True, my model will grossly overfit.
If I had the actual layers of the underlying model under my control, I would insert dropout layers or set L2 coefficient on those individual layers. But the layers are imported to my network using TensorFlow Hub KerasLayer method. Also, I suspect that the underlying model is quite complicated.
I wonder what's the standard practice for solving this kind of issues.
Maybe there is a way to force regularization to the whole network somehow? I know that in TensorFlow 1, there were optimizers like ProximalAdagradOptimizer that took L2 coefficients. In TensorFlow 2, the only optimizer like this is FTRL, but it's hard for me to make it work for my dataset.
I "solved" it by
pretraining non-transferred parts of the model,
then turning on learning for the shared layers,
introducing early stopping,
and configuring the optimizer to go really slow.
This way, I managed to not damage the transferred layers too much. Anyway, I still wonder whether this is the best one can do.
Related
I would like to deploy a trained Keras model on a microcontroller. However, there is no support for Spatial Dropout layer. I thought about removing the layer from the graph similarly to the Dropout layer. However I didn't find any indication on how the Spatial Dropout works in inference.
I have tried to look into the documentations or similar problem but couldn't find any indication about it.
This is a more general version of a question I've already asked: Significant difference between outputs of deep tensorflow keras model in Python and tensorflowjs conversion
As far as I can tell, the layers of a tfjs model when run in the browser (so far only tested in Chrome and Firefox) will have small numerical differences in the output values when compared to the same model run in Python or Node. The cumulative effect of these small differences across all the layers of the model can cause fairly significant differences in the output. See here for an example of this.
This means a model trained in Python or Node will not perform as well in terms of accuracy when run in the browser. And the deeper your model, the worse it will get.
Therefore my question is, what is the best way to train a model to use with tfjs in the browser? Is there a way to ensure the output will be identical? Or do you just have to accept that there will be small numerical differences and, if so, are there any methods that can be used to train a model to be more resilient to this?
This answer is based on my personal observations. As such, it is debatable and not backed by much evidence. Some things that I follow to get accuracy of 16-bit models close to 32 bit models are:
Avoid using activations that have small upper and lower bounds, such as sigmoid or tanh, for hidden layers. These activations cause the weights of the next layer to become very sensitive to small values, and hence, small changes. I prefer using ReLU for such models. Since it is now the standard activation for hidden layers in most models, you should be using it in any case.
Avoid weight decay and L1/L2 regularizations on weights while training (the kernel_regularizer parameter in keras), since these increase sensitivity of weights. Use Dropout instead, I didn't observe a major drop in performance on TFLite when using it instead of numerical regularizers.
I followed all the steps mentioned in the article:
https://stackabuse.com/tensorflow-2-0-solving-classification-and-regression-problems/
Then I compared the results with Linear Regression and found that the error is less (68) than the tensorflow model (84).
from sklearn.linear_model import LinearRegression
logreg_clf = LinearRegression()
logreg_clf.fit(X_train, y_train)
pred = logreg_clf.predict(X_test)
print(np.sqrt(mean_squared_error(y_test, pred)))
Does this mean that if I have large dataset, I will get better results than linear regression?
What is the best situation - when I should be using tensorflow?
Answering your first question, Neural Networks are notoriously known for overfitting on smaller datasets, and here you are comparing the performance of a simple linear regression model with a neural network with two hidden layers on the testing data set, so it's not very surprising to see that the MLP model falling behind (assuming that you are working with relatively a smaller dataset) the linear regression model. Larger datasets will definitely help neural networks in learning more accurate parameters and generalize the phenomena well.
Now coming to your second question, Tensorflow is basically a library for building deep learning models, so whenever you are working on a deep learning problem like image recognition, Natural Language Processing, etc. you need massive computational power and will be processing a ton of data to train your models, and this is where TensorFlow becomes handy, it offers you GPU support which will significantly boost your training process which otherwise becomes practically impossible. Moreover, if you are building a product that has to be deployed in a production environment for it to be consumed, you can make use of TensorFlow Serving which helps you to take your models much closer to the customers.
I am looking to train a large face identification network. Resnet or VGG-16/19. TensorFlow 1.14
My question is - if I run out of GPU memory - is it valid strategy to train sets of layers one by one?
For example train 2 cnn and maxpooling layer as one set, then "freeze the weights" somehow and train next set etc..
I know I can train on multi-gpu in tensorflow but what if I want to stick to just one GPU..
The usual approach is to use transfer learning: use a pretrained model and fine-tune it for the task.
For fine-tuning in computer vision, a known approach is re-training only the last couple of layers. See for example:
https://www.learnopencv.com/keras-tutorial-fine-tuning-using-pre-trained-models/
I may be wrong but, even if you freeze your weights, they still need to be loaded into the memory (you need to do whole forward pass in order to compute the loss).
Comments on this are appreciated.
I'm using TensorFlow to train a Convolutional Neural Network (CNN) for a sign language application. The CNN has to classify 27 different labels, so unsurprisingly, a major problem has been addressing overfitting. I've taken several steps to accomplish this:
I've collected a large amount of high-quality training data (over 5000 samples per label).
I've built a reasonably sophisticated pre-processing stage to help maximize invariance to things like lighting conditions.
I'm using dropout on the fully-connected layers.
I'm applying L2 regularization to the fully-connected parameters.
I've done extensive hyper-parameter optimization (to the extent possible given HW and time limitations) to identify the simplest model that can achieve close to 0% loss on training data.
Unfortunately, even after all these steps, I'm finding that I can't achieve much better that about 3% test error. (It's not terrible, but for the application to be viable, I'll need to improve that substantially.)
I suspect that the source of the overfitting lies in the convolutional layers since I'm not taking any explicit steps there to regularize (besides keeping the layers as small as possible). But based on examples provided with TensorFlow, it doesn't appear that regularization or dropout is typically applied to convolutional layers.
The only approach I've found online that explicitly deals with prevention of overfitting in convolutional layers is a fairly new approach called Stochastic Pooling. Unfortunately, it appears that there is no implementation for this in TensorFlow, at least not yet.
So in short, is there a recommended approach to prevent overfitting in convolutional layers that can be achieved in TensorFlow? Or will it be necessary to create a custom pooling operator to support the Stochastic Pooling approach?
Thanks for any guidance!
How can I fight overfitting?
Get more data (or data augmentation)
Dropout (see paper, explanation, dropout for cnns)
DropConnect
Regularization (see my masters thesis, page 85 for examples)
Feature scale clipping
Global average pooling
Make network smaller
Early stopping
How can I improve my CNN?
Thoma, Martin. "Analysis and Optimization of Convolutional Neural Network Architectures." arXiv preprint arXiv:1707.09725 (2017).
See chapter 2.5 for analysis techniques. As written in the beginning of that chapter, you can usually do the following:
(I1) Change the problem definition (e.g., the classes which are to be distinguished)
(I2) Get more training data
(I3) Clean the training data
(I4) Change the preprocessing (see Appendix B.1)
(I5) Augment the training data set (see Appendix B.2)
(I6) Change the training setup (see Appendices B.3 to B.5)
(I7) Change the model (see Appendices B.6 and B.7)
Misc
The CNN has to classify 27 different labels, so unsurprisingly, a major problem has been addressing overfitting.
I don't understand how this is connected. You can have hundreds of labels without a problem of overfitting.