Use <ReferenceInput /> data source for multiple inputs - react-admin

So I have a case where we need to select a total of 8 fonts (a primary and a secondary font in four weights each), and since these are named fields, they need to be individual input fields, and each field can potentially be assigned equal values if less typographic variation is wanted.
All these 8 fields use the exact same data source, let’s say they’re available at /fonts in our API.
The way we solved this temporarily, is to have 8 <SelectInput>s wrapped in individual <ReferenceInput>s like so;
<ReferenceInput source="fonts.<identifier>" reference="fonts">
<SelectInput optionText="id"/>
</ReferenceInput>
This doesn’t perform all that well, and we are now wondering if it’s somehow possible to wrap multiple <SelectInput>s in some kind of ReferenceProvider, and have them all share the same data source?

Related

How can I recode 53k unique addresses (saved as objects) w/o One-Hot-Encoding in Pandas?

My data frame has 3.8 million rows and 20 or so features, many of which are categorical. After paring down the number of features, I can "dummy up" one critical column with 20 or so categories and my COLAB with (allegedly) TPU running won't crash.
But there's another column with about 53,000 unique values. Trying to "dummy up" this feature crashes my session. I can't ditch this column.
I've looked up target encoding, but the data set is very imbalanced and I'm concerned about target leakage. Is there a way around this?
EDIT: My target variable is a simple binary one.
Without knowing more details of the problem/feature, there's no obvious way to do this. This is the part of Data Science/Machine Learning that is an art, not a science. A couple ideas:
One hot encode everything, then use a dimensionality reduction algorithm to remove some of the columns (PCA, SVD, etc).
Only one hot encode some values (say limit it to 10 or 100 categories, rather than 53,000), then for the rest, use an "other" category.
If it's possible to construct an embedding for these variables (Not always possible), you can explore this.
Group/bin the values in the columns by some underlying feature. I.e. if the feature is something like days_since_X, bin it by 100 or something. Or if it's names of animals, group it by type instead (mammal, reptile, etc.)

Natural way of indexing elements in Flink

Is there a built-in way to index and access indices of individual elements of DataStream/DataSet collection?
Like in typical Java collections, where you know that e.g. a 3rd element of an ArrayList can be obtained by ArrayList.get(2) and vice versa ArrayList.indexOf(elem) gives us the index of (the first occurence of) the specified element. (I'm not asking about extracting elements out of the stream.)
More specifically, when joining DataStreams/DataSets, is there a "natural"/easy way to join elements that came (were created) first, second, etc.?
I know there is a zipWithIndex transformation that assigns sequential indices to elements. I suspect the indices always start with 0? But I also suspect that they aren't necessarily assigned in the order the elements were created in (i.e. by their Event Time). (It also exists only for DataSets.)
This is what I currently tried:
DataSet<Tuple2<Long, Double>> tempsJoIndexed = DataSetUtils.zipWithIndex(tempsJo);
DataSet<Tuple2<Long, Double>> predsLinJoIndexed = DataSetUtils.zipWithIndex(predsLinJo);
DataSet<Tuple3<Double, Double, Double>> joinedTempsJo = tempsJoIndexed
.join(predsLinJoIndexed).where(0).equalTo(0)...
And it seems to create wrong pairs.
I see some possible approaches, but they're either non-Flink or not very nice:
I could of course assign an index to each element upon the stream's
creation and have e.g. a stream of Tuples.
Work with event-time timestamps. (I suspect there isn't a way to key by timestamps, and even if there was, it wouldn't be useful for
joining multiple streams like this unless the timestamps are
actually assigned as indices.)
We could try "collecting" the stream first but then we wouldn't be using Flink anymore.
The 1. approach seems like the most viable one, but it also seems redundant given that the stream should by definition be a sequential collection and as such, the elements should have a sense of orderliness (e.g. `I'm the 36th element because 35 elements already came before me.`).
I think you're going to have to assign index values to elements, so that you can partition the data sets by this index, and thus ensure that two records which need to be joined are being processed by the same sub-task. Once you've done that, a simple groupBy(index) and reduce() would work.
But assigning increasing ids without gaps isn't trivial, if you want to be reading your source data with parallelism > 1. In that case I'd create a RichMapFunction that uses the runtimeContext sub-task id and number of sub-tasks to calculate non-overlapping and monotonic indexes.

Non-cryptography algorithms to protect the data

I was able to find a few, but I was wondering, is there more algorithms that based on data encoding/modification instead of complete encryption of it. Examples that I found:
Steganography. The method is based on hiding a message within a message;
Tokenization. Data is mapped in the tokenization server to a random token that represents the real data outside of the server;
Data perturbation. As far as I know it works mostly with databases. Adds noise to the sensitive records yet allows to read general and public fields, like sum of the records on a specific day.
Are there any other methods like this?
If your purpose is to publish this data there are other methods similars to data perturbation, its called Data Anonymization [source]:
Data masking—hiding data with altered values. You can create a mirror
version of a database and apply modification techniques such as
character shuffling, encryption, and word or character substitution.
For example, you can replace a value character with a symbol such as
“*” or “x”. Data masking makes reverse engineering or detection
impossible.
Pseudonymization—a data management and de-identification method that
replaces private identifiers with fake identifiers or pseudonyms, for
example replacing the identifier “John Smith” with “Mark Spencer”.
Pseudonymization preserves statistical accuracy and data integrity,
allowing the modified data to be used for training, development,
testing, and analytics while protecting data privacy.
Generalization—deliberately removes some of the data to make it less
identifiable. Data can be modified into a set of ranges or a broad
area with appropriate boundaries. You can remove the house number in
an address, but make sure you don’t remove the road name. The purpose
is to eliminate some of the identifiers while retaining a measure of
data accuracy.
Data swapping—also known as shuffling and permutation, a technique
used to rearrange the dataset attribute values so they don’t
correspond with the original records. Swapping attributes (columns)
that contain identifiers values such as date of birth, for example,
may have more impact on anonymization than membership type values.
Data perturbation—modifies the original dataset slightly by applying techniques that round numbers and add random noise. The range
of values needs to be in proportion to the perturbation. A small base
may lead to weak anonymization while a large base can reduce the
utility of the dataset. For example, you can use a base of 5 for
rounding values like age or house number because it’s proportional to
the original value. You can multiply a house number by 15 and the
value may retain its credence. However, using higher bases like 15 can
make the age values seem fake.
Synthetic data—algorithmically manufactured information that has no
connection to real events. Synthetic data is used to create artificial
datasets instead of altering the original dataset or using it as is
and risking privacy and security. The process involves creating
statistical models based on patterns found in the original dataset.
You can use standard deviations, medians, linear regression or other
statistical techniques to generate the synthetic data.
Is this what are you looking for?
EDIT: added link to the source and quotation.

Organising de-normalised data in redis

In a Redis database I have a number of hashes corresponding to "story" objects.
I have an ordered set stories containing all keys of the above (the stories) enabling convenient retrieval of stories.
I now want to store arbitrary emoticons (ie. the Unicode characters corresponding to "smiley face" etc) with stories as "user emotions" corresponding to the emotion the story made the user feel.
I am thinking of:
creating new hashes called emotions containing single emoticons (one per emotion expressed)
creating a hash called story-emotions that enables efficient retrieval of and counting of all the emotions associated with a story
creating another new hash called user-story-emotions mapping user IDs to items in the story-emotion hash.
Typical queries will be:
retrieve all the emotions for a story for the current user
retrieve the count of each kind of emotion for the 50 latest stories
Does this sound like a sensible approach?
Very sensible, but I think I can help make it even more so.
To store the emoticons dictionary, use two Hashes. The first, lets call it emoticon-id should have a field for each emoticon expressed. The field name is the actual Unicode sequence and the value is a unique integer value starting from 0, and increasing for each new emoticon added.
Another Hash, id-emoticon, should be put in place to do the reverse mapping, i.e. from field names that are ids to actual Unicode values.
This gives you O(1) lookups for emoticons, and you should also consider caching this in your app.
To store the user-story-emotions data, look into Redis' Bitmaps. Tersely, use the emoticon id as index to toggle the presence/lack of it by that user towards that story.
Note that in order to keep things compact, you'll want popular emotions to have low ids so your bitmaps remain a small as possible.
To store the aggregative story-emotions, the Sorted Set would be a better option. Elements can be either id or actual unicode, and the score should be the current count. This will allow you to fetch the top emoticons (ZREVRANGEBYSCORE) and/or page similarly to how you're doing with the recent 50 stories (I assume you're using the stories Sorted Set for that).
Lastly, when serving the second query, use pipelining or Lua scripting when fetching the bulk of 50 story-emotion counter values in order get more throughput and better concurrency.

Suggestions/Opinions for implementing a fast and efficient way to search a list of items in a very large dataset

Please comment and critique the approach.
Scenario: I have a large dataset(200 million entries) in a flat file. Data is of the form - a 10 digit phone number followed by 5-6 binary fields.
Every week I will be getting a Delta files which will only contain changes to the data.
Problem : Given a list of items i need to figure out whether each item(which will be the 10 digit number) is present in the dataset.
The approach I have planned :
Will parse the dataset and put it a DB(To be done at the start of the
week) like MySQL or Postgres. The reason i want to have RDBMS in the
first step is I want to have full time series data.
Then generate some kind of Key Value store out of this database with
the latest valid data which supports operation to find out whether
each item is present in the dataset or not(Thinking some kind of a
NOSQL db, like Redis here optimised for search. Should have
persistence and be distributed). This datastructure will be read-only.
Query this key value store to find out whether each item is present
(if possible match a list of values all at once instead of matching
one item at a time). Want this to be blazing fast. Will be using this functionality as the back-end to a REST API
Sidenote: Language of my preference is Python.
A few considerations for the fast lookup:
If you want to check a set of numbers at a time, you could use the Redis SINTER which performs set intersection.
You might benefit from using a grid structure by distributing number ranges over some hash function such as the first digit of the phone number (there are probably better ones, you have to experiment), this would e.g. reduce the size per node, when using an optimal hash, to near 20 million entries when using 10 nodes.
If you expect duplicate requests, which is quite likely, you could cache the last n requested phone numbers in a smaller set and query that one first.