Random valid data items in numpy array - numpy

Suppose I have a numpy array as follows:
data = np.array([[1, 3, 8, np.nan], [np.nan, 6, 7, 9], [np.nan, 0, 1, 2], [5, np.nan, np.nan, 2]])
I would like to randomly select n-valid items from the array, including their indices.
Does numpy provide an efficient way of doing this?

Example
data = np.array([[1, 3, 8, np.nan], [np.nan, 6, 7, 9], [np.nan, 0, 1, 2], [5, np.nan, np.nan, 2]])
n = 5
Get valid indices
y_val, x_val = np.where(~np.isnan(data))
n_val = y_val.size
Pick random subset of size n by index
pick = np.random.choice(n_val, n)
Apply index to valid coordinates
y_pick, x_pick = y_val[pick], x_val[pick]
Get corresponding data
data_pick = data[y_pick, x_pick]
Admire
data_pick
# array([2., 8., 1., 1., 2.])
y_pick
# array([3, 0, 0, 2, 3])
x_pick
# array([3, 2, 0, 2, 3])

Find nonzeros by :
In [37]: a = np.array(np.nonzero(data)).reshape(-1,2)
In [38]: a
Out[38]:
array([[0, 0],
[0, 0],
[1, 1],
[1, 1],
[2, 2],
[2, 3],
[3, 3],
[3, 0],
[1, 2],
[3, 0],
[1, 2],
[3, 0],
[2, 3],
[0, 1],
[2, 3]])
Now pick a random choice :
In [44]: idx = np.random.choice(np.arange(len(a)))
In [45]: data[a[idx][0],a[idx][1]]
Out[45]: 2.0

Related

Delete specified column index from every row of 2d numpy array

I have a numpy array A as follows:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
and another numpy array column_indices_to_be_deleted as follows:
array([1, 0, 2])
I want to delete the element from every row of A specified by the column indices in column_indices_to_be_deleted. So, column index 1 from row 0, column index 0 from row 1 and column index 2 from row 2 in this case, to get a new array that looks like this:
array([[1, 3],
[5, 6],
[7, 8]])
What would be the simplest way of doing that?
One way with masking created with broadcatsed-comparison -
In [43]: a # input array
Out[43]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [44]: remove_idx # indices to be removed from each row
Out[44]: array([1, 0, 2])
In [45]: n = a.shape[1]
In [46]: a[remove_idx[:,None]!=np.arange(n)].reshape(-1,n-1)
Out[46]:
array([[1, 3],
[5, 6],
[7, 8]])
Another mask based approach with the mask created with array-assignment -
In [47]: mask = np.ones(a.shape,dtype=bool)
In [48]: mask[np.arange(len(remove_idx)), remove_idx] = 0
In [49]: a[mask].reshape(-1,a.shape[1]-1)
Out[49]:
array([[1, 3],
[5, 6],
[7, 8]])
Another with np.delete -
In [64]: m,n = a.shape
In [66]: np.delete(a.flat,remove_idx+n*np.arange(m)).reshape(m,-1)
Out[66]:
array([[1, 3],
[5, 6],
[7, 8]])

Elementwise concatenation in numpy

I'm trying to concatenate 2 arrays element wise. I have the concatenation working to produce the correct shape but it has not been applied element wise.
So i have this array
[0, 1]
[2, 3]
[4, 5]
I want to append each element in the array with each element. the target result would be
[0, 1, 0, 1]
[0, 1, 2, 3]
[0, 1, 4, 5]
[2, 3, 0, 1]
[2, 3, 2, 3]
[2, 3, 4, 5]
[4, 5, 0, 1]
[4, 5, 2, 3]
[4, 5, 4, 5]
i think i may need to change an axis but then i can't get the broadcasting to work.
any help would be greatly appreciated. lots to learn in numpy !
a = np.arange(6).reshape(3, 2))
b = np.concatenate((a, a), axis=1)
One way would be stacking replicated versions created with np.repeat and np.tile -
In [52]: n = len(a)
In [53]: np.hstack((np.repeat(a,n,axis=0),np.tile(a,(n,1))))
Out[53]:
array([[0, 1, 0, 1],
[0, 1, 2, 3],
[0, 1, 4, 5],
[2, 3, 0, 1],
[2, 3, 2, 3],
[2, 3, 4, 5],
[4, 5, 0, 1],
[4, 5, 2, 3],
[4, 5, 4, 5]])
Another would be with broadcasted-assignment, since you mentioned broadcasting -
def create_mesh(a):
m,n = a.shape
out = np.empty((m,m,2*n),dtype=a.dtype)
out[...,:n] = a[:,None]
out[...,n:] = a
return out.reshape(-1,2*n)
One solution is to build on senderle's cartesian_product to extend this to 2D arrays. Here's how I usually do this:
# Your input array.
arr
# array([[0, 1],
# [2, 3],
# [4, 5]])
idxs = cartesian_product(*[np.arange(len(arr))] * 2)
arr[idxs].reshape(idxs.shape[0], -1)
# array([[0, 1, 0, 1],
# [0, 1, 2, 3],
# [0, 1, 4, 5],
# [2, 3, 0, 1],
# [2, 3, 2, 3],
# [2, 3, 4, 5],
# [4, 5, 0, 1],
# [4, 5, 2, 3],
# [4, 5, 4, 5]])

How to combined two arrays by interating with numpy? [duplicate]

I'd like to turn an open mesh returned by the numpy ix_ routine to a list of coordinates
eg, for:
In[1]: m = np.ix_([0, 2, 4], [1, 3])
In[2]: m
Out[2]:
(array([[0],
[2],
[4]]), array([[1, 3]]))
What I would like is:
([0, 1], [0, 3], [2, 1], [2, 3], [4, 1], [4, 3])
I'm pretty sure I could hack it together with some iterating, unpacking and zipping, but I'm sure there must be a smart numpy way of achieving this...
Approach #1 Use np.meshgrid and then stack -
r,c = np.meshgrid(*m)
out = np.column_stack((r.ravel('F'), c.ravel('F') ))
Approach #2 Alternatively, with np.array() and then transposing, reshaping -
np.array(np.meshgrid(*m)).T.reshape(-1,len(m))
For a generic case with for generic number of arrays used within np.ix_, here are the modifications needed -
p = np.r_[2:0:-1,3:len(m)+1,0]
out = np.array(np.meshgrid(*m)).transpose(p).reshape(-1,len(m))
Sample runs -
Two arrays case :
In [376]: m = np.ix_([0, 2, 4], [1, 3])
In [377]: p = np.r_[2:0:-1,3:len(m)+1,0]
In [378]: np.array(np.meshgrid(*m)).transpose(p).reshape(-1,len(m))
Out[378]:
array([[0, 1],
[0, 3],
[2, 1],
[2, 3],
[4, 1],
[4, 3]])
Three arrays case :
In [379]: m = np.ix_([0, 2, 4], [1, 3],[6,5,9])
In [380]: p = np.r_[2:0:-1,3:len(m)+1,0]
In [381]: np.array(np.meshgrid(*m)).transpose(p).reshape(-1,len(m))
Out[381]:
array([[0, 1, 6],
[0, 1, 5],
[0, 1, 9],
[0, 3, 6],
[0, 3, 5],
[0, 3, 9],
[2, 1, 6],
[2, 1, 5],
[2, 1, 9],
[2, 3, 6],
[2, 3, 5],
[2, 3, 9],
[4, 1, 6],
[4, 1, 5],
[4, 1, 9],
[4, 3, 6],
[4, 3, 5],
[4, 3, 9]])

Calling reshape on an LSTMStateTuple turns it into a tensor

I was using dynamic_rnn with an LSTMCell, which put out an LSTMStateTuple containing the inner state. Calling reshape on this object (by my mistake) results in a tensor without causing any error at graph creation. I didn't get any error at runtime when feeding input through the graph, either.
Code:
cell = tf.contrib.rnn.LSTMCell(size, state_is_tuple=True, ...)
outputs, states = tf.nn.dynamic_rnn(cell, inputs, ...)
print(states) # state is an LSTMStateTuple
states = tf.reshape(states, [-1, size])
print(states) # state is a tensor of shape [?, size]
Is this a bug (I ask because it's not documented anywhere)? What is the reshaped tensor holding?
I have conducted a similar experiment which may gives you some hints:
>>> s = tf.constant([[0, 0, 0, 1, 1, 1],
[2, 2, 2, 3, 3, 3]])
>>> t = tf.constant([[4, 4, 4, 5, 5, 5],
[6, 6, 6, 7, 7, 7]])
>>> g = tf.reshape((s, t), [-1, 3]) # <tf.Tensor 'Reshape_1:0' shape=(8, 3) dtype=int32>
>>> sess.run(g)
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7]], dtype=int32)
We can see that it just concatenates the two tensors in the first dimension and performs the reshaping. Since the LSTMStateTuple is like a namedtuple then it has the same effect as tuple and I think this is also what happens in your case.
Let's go further,
>>> st = tf.contrib.rnn.LSTMStateTuple(s, t)
>>> gg = tf.reshape(st, [-1, 3])
>>> sess.run(gg)
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7]], dtype=int32)
We can see that if we create a LSTMStateTuple, the result verifies our assumption.

Extract blocks or patches from NumPy Array

I have a 2-d numpy array as follows:
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]]
I want to extract it into patches of 2 by 2 sizes with out repeating the elements.
The answer should exactly be the same. This can be 3-d array or list with the same order of elements as below:
[[[1,5],
[2,6]],
[[3,7],
[4,8]],
[[9,13],
[10,14]],
[[11,15],
[12,16]]]
How can do it easily?
In my real problem the size of a is (36, 72). I can not do it one by one. I want programmatic way of doing it.
Using scikit-image:
import numpy as np
from skimage.util import view_as_blocks
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]])
print(view_as_blocks(a, (2, 2)))
You can achieve it with a combination of np.reshape and np.swapaxes like so -
def extract_blocks(a, blocksize, keep_as_view=False):
M,N = a.shape
b0, b1 = blocksize
if keep_as_view==0:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2).reshape(-1,b0,b1)
else:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2)
As can be seen there are two ways to use it - With keep_as_view flag turned off (default one) or on. With keep_as_view = False, we are reshaping the swapped-axes to a final output of 3D, while with keep_as_view = True, we will keep it 4D and that will be a view into the input array and hence, virtually free on runtime. We will verify it with a sample case run later on.
Sample cases
Let's use a sample input array, like so -
In [94]: a
Out[94]:
array([[2, 2, 6, 1, 3, 6],
[1, 0, 1, 0, 0, 3],
[4, 0, 0, 4, 1, 7],
[3, 2, 4, 7, 2, 4],
[8, 0, 7, 3, 4, 6],
[1, 5, 6, 2, 1, 8]])
Now, let's use some block-sizes for testing. Let's use a blocksize of (2,3) with the view-flag turned off and on -
In [95]: extract_blocks(a, (2,3)) # Blocksize : (2,3)
Out[95]:
array([[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]],
[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]],
[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]])
In [48]: extract_blocks(a, (2,3), keep_as_view=True)
Out[48]:
array([[[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]]],
[[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]]],
[[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]]])
Verify view with keep_as_view=True
In [20]: np.shares_memory(a, extract_blocks(a, (2,3), keep_as_view=True))
Out[20]: True
Let's check out performance on a large array and verify the virtually free runtime claim as discussed earlier -
In [42]: a = np.random.rand(2000,3000)
In [43]: %timeit extract_blocks(a, (2,3), keep_as_view=True)
1000000 loops, best of 3: 801 ns per loop
In [44]: %timeit extract_blocks(a, (2,3), keep_as_view=False)
10 loops, best of 3: 29.1 ms per loop
Here's a rather cryptic numpy one-liner to generate your 3-d array, called result1 here:
In [60]: x
Out[60]:
array([[2, 1, 2, 2, 0, 2, 2, 1, 3, 2],
[3, 1, 2, 1, 0, 1, 2, 3, 1, 0],
[2, 0, 3, 1, 3, 2, 1, 0, 0, 0],
[0, 1, 3, 3, 2, 0, 3, 2, 0, 3],
[0, 1, 0, 3, 1, 3, 0, 0, 0, 2],
[1, 1, 2, 2, 3, 2, 1, 0, 0, 3],
[2, 1, 0, 3, 2, 2, 2, 2, 1, 2],
[0, 3, 3, 3, 1, 0, 2, 0, 2, 1]])
In [61]: result1 = x.reshape(x.shape[0]//2, 2, x.shape[1]//2, 2).swapaxes(1, 2).reshape(-1, 2, 2)
result1 is like a 1-d array of 2-d arrays:
In [68]: result1.shape
Out[68]: (20, 2, 2)
In [69]: result1[0]
Out[69]:
array([[2, 1],
[3, 1]])
In [70]: result1[1]
Out[70]:
array([[2, 2],
[2, 1]])
In [71]: result1[5]
Out[71]:
array([[2, 0],
[0, 1]])
In [72]: result1[-1]
Out[72]:
array([[1, 2],
[2, 1]])
(Sorry, I don't have time at the moment to give a detailed breakdown of how it works. Maybe later...)
Here's a less cryptic version that uses a nested list comprehension. In this case, result2 is a python list of 2-d numpy arrays:
In [73]: result2 = [x[2*j:2*j+2, 2*k:2*k+2] for j in range(x.shape[0]//2) for k in range(x.shape[1]//2)]
In [74]: result2[5]
Out[74]:
array([[2, 0],
[0, 1]])
In [75]: result2[-1]
Out[75]:
array([[1, 2],
[2, 1]])