I'm using Kotlin with HikariCP and jOOQ to query my database. I've come to realize that this code works as expected, fetching the rows and closing the connection afterwards:
class CountriesService(private val datasource: DataSource) {
private val countries = Countries()
fun getCountries(): List<String> {
DSL.using(datasource, SQLDialect.POSTGRES_10)
.use { ctx ->
ctx.select(countries.CO_NAME)
.from(countries)
.orderBy(countries.CO_NAME)
.fetch()
return emptyList()
}
}
}
whereas if I use fetchResultSet(), the connection is never closed and the pool dries out:
class CountriesService(private val datasource: DataSource) {
private val countries = Countries()
fun getCountries(): List<String> {
DSL.using(datasource, SQLDialect.POSTGRES_10)
.use { ctx ->
ctx.select(countries.CO_NAME)
.from(countries)
.orderBy(countries.CO_NAME)
.fetchResultSet()
return emptyList()
}
}
}
I've seen that AbstractResultQuery#fetchResultSet() is delegating to a fetchLazy() method, so not sure if it has something to do with that.
If I get the connection myself instead of delegating it to the DSLContext, then it works:
class CountriesService(private val datasource: DataSource) {
private val countries = Countries()
fun getCountries(): List<String> {
val conn = datasource.connection
conn.use {
DSL.using(it, SQLDialect.POSTGRES_10)
.select(countries.CO_NAME)
.from(countries)
.orderBy(countries.CO_NAME)
.fetchResultSet()
return emptyList()
}
}
}
Is this last approach the one I should be using?
It works exactly as specified in the Javadoc:
This is the same as calling fetchLazy().resultSet() and will return a ResultSet wrapping the JDBC driver's ResultSet. Closing this ResultSet may close the producing Statement or PreparedStatement, depending on your setting for keepStatement(boolean).
The point of this method is that you want to consume a JDBC result set rather than having jOOQ consume it for you. So, you're responsible for the resource management.
Given your example code, you should definitely not call this method but call fetch() instead. For example:
class CountriesService(private val datasource: DataSource) {
private val countries = Countries()
fun getCountries(): List<String> {
return
DSL.using(datasource, SQLDialect.POSTGRES_10)
.select(countries.CO_NAME)
.from(countries)
.orderBy(countries.CO_NAME)
.fetch(countries.CO_NAME)
}
}
Notice, you don't need to call that use() method on your DSLContext. While DSLContext extends AutoCloseable, this is only needed when your DSLContext manages the underlying JDBC connection (i.e. when it creates it). In your case, when you pass a data source to DSL.using(), then you don't have to close the DSLContext.
Related
I have a data structure which has members that are not thread safe and the caller needs to lock the resource for reading and writing as appropriate. Here's a minimal code sample:
class ExampleResource : LockableProjectItem {
override val readWriteLock: ReadWriteLock = ReentrantReadWriteLock()
#RequiresReadLock
val nonThreadSafeMember: String = ""
}
interface LockableProjectItem {
val readWriteLock: ReadWriteLock
}
fun <T : LockableProjectItem, Out> T.readLock(block: T.() -> Out): Out {
try {
readWriteLock.readLock().lock()
return block(this)
} finally {
readWriteLock.readLock().unlock()
}
}
fun <T : LockableProjectItem, Out> T.writeLock(block: T.() -> Out): Out {
try {
readWriteLock.writeLock().lock()
return block(this)
} finally {
readWriteLock.writeLock().unlock()
}
}
annotation class RequiresReadLock
A call ExampleResource.nonThreadSafeMember might then look like this:
val resource = ExampleResource()
val readResult = resource.readLock { nonThreadSafeMember }
To make sure that the caller is aware that the resource needs to be locked, I would like the IDE to issue a warning for any members that are annotated with #RequiresReadLock and are not surrounded with a readLock block. Is there any way to do this in IntelliJ without writing a custom plugin for the IDE?
I think this is sort of a hack, but using context receivers might work. I don't think they are intended to be used in this way though.
You can declare a dummy object to act as the context receiver, and add that as a context receiver to the property:
object ReadLock
class ExampleResource : LockableProjectItem {
override val readWriteLock: ReadWriteLock = ReentrantReadWriteLock()
// properties with context receivers cannot have a backing field, so we need to explicitly declare this
private val nonThreadSafeMemberField: String = ""
context(ReadLock)
val nonThreadSafeMember: String
get() = nonThreadSafeMemberField
}
Then in readLock, you pass the object:
fun <T : LockableProjectItem, Out> T.readLock(block: context(ReadLock) T.() -> Out): Out {
try {
readWriteLock.readLock().lock()
return block(ReadLock, this)
} finally {
readWriteLock.readLock().unlock()
}
}
Notes:
This will give you an error if you try to access nonThreadSafeMember without the context receiver:
val resource = ExampleResource()
val readResult = resource.nonThreadSafeMember //error
You can still access nonThreadSafeMember without acquiring a read lock by doing e.g.
with(ReadLock) { // with(ReadLock) doesn't acquire the lock, just gets the context receiver
resource.nonThreadSafeMember // no error
}
But it's way harder to accidentally write something like this, which I think is what you are trying to prevent.
If you call another function inside readLock, and you want to access nonThreadSafeMember inside that function, you should mark that function with context(ReadLock) too. e.g.
fun main() {
val resource = ExampleResource()
val readResult = resource.readLock {
foo(this)
}
}
context(ReadLock)
fun foo(x: ExampleResource) {
x.nonThreadSafeMember
}
The context receiver is propagated through.
I use MVVM and have a list of data elements in a database that is mapped through a DAO and repository to ViewModel functions.
Now, my problem is rather banal; I just want to use the data in fragment variables, but I get a type mismatch.
The MVVM introduces a bit of code, and for completeness of context I'll run through it, but I'll strip it to the essentials:
The data elements are of a data class, "Objects":
#Entity(tableName = "objects")
data class Objects(
#ColumnInfo(name = "object_name")
var objectName: String
) {
#PrimaryKey(autoGenerate = true)
var id: Int? = null
}
In ObjectsDao.kt:
#Dao
interface ObjectsDao {
#Query("SELECT * FROM objects")
fun getObjects(): LiveData<List<Objects>>
}
My database:
#Database(
entities = [Objects::class],
version = 1
)
abstract class ObjectsDatabase: RoomDatabase() {
abstract fun getObjectsDao(): ObjectsDao
companion object {
// create database
}
}
In ObjectsRepository.kt:
class ObjectsRepository (private val db: ObjectsDatabase) {
fun getObjects() = db.getObjectsDao().getObjects()
}
In ObjectsViewModel.kt:
class ObjectsViewModel(private val repository: ObjectsRepository): ViewModel() {
fun getObjects() = repository.getObjects()
}
In ObjectsFragment.kt:
class ObjectsFragment : Fragment(), KodeinAware {
private lateinit var viewModel: ObjectsViewModel
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)
viewModel = ViewModelProvider(this, factory).get(ObjectsViewModel::class.java)
// I use the objects in a recyclerview; rvObjectList
rvObjectList.layoutManager = GridLayoutManager(context, gridColumns)
val adapter = ObjectsAdapter(listOf(), viewModel)
// And I use an observer to keep the recyclerview updated
viewModel.getObjects.observe(viewLifecycleOwner, {
adapter.objects = it
adapter.notifyDataSetChanged()
})
}
}
The adapter:
class ObjectsAdapter(var objects: List<Objects>,
private val viewModel: ObjectsViewModel):
RecyclerView.Adapter<ObjectsAdapter.ObjectsViewHolder>() {
// Just a recyclerview adapter
}
Now, all the above works fine - but my problem is that I don't want to use the observer to populate the recyclerview; in the database I store some objects, but there are more objects that I don't want to store.
So, I try to do this instead (in the ObjectsFragment):
var otherObjects: List<Objects>
// ...
if (condition) {
adapter.objects = viewModel.getObjects()
} else {
adapter.objects = otherObjects
}
adapter.notifyDataSetChanged()
And, finally, my problem; I get type mismatch for the true condition assignment:
Type mismatch: inferred type is LiveData<List> but List was expected
I am unable to get my head around this. Isn't this pretty much what is happening in the observer? I know about backing properties, such as explained here, but I don't know how to do that when my data is not defined in the ViewModel.
We need something to switch data source. We pass switching data source event to viewModel.
mySwitch.setOnCheckedChangeListener { _, isChecked ->
viewModel.switchDataSource(isChecked)
}
In viewModel we handle switching data source
(To use switchMap include implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.4.0")
class ObjectsViewModel(private val repository: ObjectsRepository) : ViewModel() {
// Best practice is to keep your data in viewModel. And it is useful for us in this case too.
private val otherObjects = listOf<Objects>()
private val _loadDataFromDataBase = MutableLiveData<Boolean>()
// In case your repository returns liveData of favorite list
// from dataBase replace MutableLiveData(otherObjects) with repository.getFavorite()
fun getObjects() = _loadDataFromDataBase.switchMap {
if (it) repository.getObjects() else MutableLiveData(otherObjects)
}
fun switchDataSource(fromDataBase: Boolean) {
_loadDataFromDataBase.value = fromDataBase
}
}
In activity/fragment observe getObjects()
viewModel.getObjects.observe(viewLifecycleOwner, {
adapter.objects = it
adapter.notifyDataSetChanged()
})
You can do something like this:
var displayDataFromDatabase = true // Choose whatever default fits your use-case
var databaseList = emptyList<Objects>() // List we get from database
val otherList = // The other list that you want to show
toggleSwitch.setOnCheckedChangeListener { _, isChecked ->
displayDataFromDatabase = isChecked // Or the negation of this
// Update adapter to use databaseList or otherList depending upon "isChecked"
}
viewModel.getObjects.observe(viewLifecycleOwner) { list ->
databaseList = list
if(displayDataFromDatabase)
// Update adapter to use this databaseList
}
I have a function "getUser" in my Repository which emits an object representing a user based on the provided id.
flow function
fun getUser(id: String) = callbackFlow {
val collectionReference: CollectionReference =
FirebaseFirestore.getInstance().collection(COLLECTION_USERS)
val query: Query = collectionReference.whereEqualTo(ID, id)
query.get().addOnSuccessListener {
val lst = it.toObjects(User::class.java)
if (lst.isEmpty())
offer(null)
else
offer(it.toObjects(User::class.java)[0])
}
awaitClose()
}
I need these values in another class. I loop over a list of ids and I add the collected user to a new list. How can I wait for the list to be completed when I collect the values, before calling return?
collector function
private fun computeAttendeesList(reminder: Reminder): ArrayList<User> {
val attendeesList = arrayListOf<User>()
for (friend in reminder.usersToShare) {
repoScope.launch {
Repository.getUser(friend).collect {
it?.let { user ->
if (!attendeesList.contains(user))
attendeesList.add(user)
}
}
}
}
return attendeesList
}
I do not want to use live data since this is not a UI-related class.
There are multiple problems to address in this code:
getUser() is meant to return a single User, but it currently returns a Flow<User>
which will never end, and never return more than one user.
the way the list of users is constructed from multiple concurrent query is not thread safe (because multiple launches are executed on the multi-threaded IO dispatcher, and they all update the same unsafe list directly)
the actual use case is to get a list of users from Firebase, but many queries for a single ID are used instead of a single query
Solution to #1
Let's tackle #1 first. Here is a version of getUser() that suspends for a single User instead of returning a Flow:
suspend fun getUser(id: String): User {
val collectionReference = FirebaseFirestore.getInstance().collection(COLLECTION_USERS)
val query = collectionReference.whereEqualTo(ID, id)
return query.get().await().let { it.toObjects(User::class.java) }.firstOrNull()
}
// use the kotlinx-coroutines-play-services library instead
private suspend fun <T> Task<T>.await(): T {
return suspendCancellableCoroutine { cont ->
addOnCompleteListener {
val e = exception
if (e == null) {
#Suppress("UNCHECKED_CAST")
if (isCanceled) cont.cancel() else cont.resume(result as T)
} else {
cont.resumeWithException(e)
}
}
}
}
It turns out that this await() function was already written (in a better way) and it's available in the kotlinx-coroutines-play-services library, so you don't need to actually write it yourself.
Solution to #2
If we could not rewrite the whole thing according to #3, we could deal with problem #2 this way:
private suspend fun computeAttendeesList(reminder: Reminder): List<User> {
return reminder.usersToShare
.map { friendId ->
repoScope.async { Repository.getUser(friendId) }
}
.map { it.await() }
.toList()
}
Solution to #3
Instead, we could directly query Firebase for the whole list:
suspend fun getUsers(ids: List<String>): List<User> {
val collectionReference = FirebaseFirestore.getInstance().collection(COLLECTION_USERS)
val query = collectionReference.whereIn(ID, ids)
return query.get().await().let { it.toObjects(User::class.java) }
}
And then consume it in a very basic way:
private suspend fun computeAttendeesList(reminder: Reminder): List<User> {
return Repository.getUsers(reminder.usersToShare)
}
Alternatively, you could make this function blocking (remove suspend) and wrap your call in runBlocking (if you really need to block the current thread).
Note that this solution didn't enforce any dispatcher, so if you want a particular scope or dispatcher, you can wrap one of the suspend function calls with withContext.
This question already has answers here:
How do I call extension methods from outside the class they are defined in?
(3 answers)
Closed 3 years ago.
I'm trying to create a very simple transaction manager like this:
object PersistenceManager {
private val dataSource: DataSource by lazy {
val config = ConfigFactory.load()
hikari(config.getConfig("postgres"))
}
private fun hikari(appConfig: Config): DataSource {
// init datasource
}
fun <T> transaction(statement: Connection.() -> T): T {
val connection = dataSource.connection
try {
return connection.statement()
} catch (e: Exception) {
connection.rollback()
throw e
} finally {
connection?.close()
}
}
}
class BrandsDB {
private val query = "select name from brands order by name"
fun Connection.getAll(): List<String> {
val ps = this.prepareStatement(query)
val rs = ps.executeQuery()
return JdbcMapperFactory.newInstance()
.newMapper(String::class.java)!!.stream(rs).toList()
}
}
class BrandsService(private val brandsDB: BrandsDB) {
fun getBrands(): List<String> {
return transaction {
brandsDB.getAll() // I'd like to do something like this but since
// getAll() method belongs to Connecion, I can't
}
}
}
So the idea behind all this is that I can have multiple queries in a single transaction block which I can rollback if anything goes wrong (should I have inserts or updates in those queries). I'd also like to avoid passing the connection to the brandsDB.getAll() method, but have it get the connection in an "implicit" way.
I know I could extract getAll() method to its own file or make BrandsDB class an object, but that'd make it possible to call the method anywhere in a static way, which I don't like. I'd also wouldn't like to put any DB related code in the BrandsService, only business logic should go there.
Would this be possible?
Connection is an interface (not class!) in Java, so you may create your own interface that extends it and delegates to it.
interface OurConnection : Connection {
fun getAll() : SomeType
}
fun <T> PersistenceManager.extendedTransaction(action: OurConnection.() -> T) : T {
//call the original method
return PersistenceManager.transaction {
object : OurConnection, Connection by this {
override fun getAll() = TODO("implement me")
}.action()
}
}
I use the delegated implementation, to implicitly delegate Connection methods in my interface. It is the Connection by this line, where this is the lambda receiver object from the PersistenceManager.transaction function call.
I am trying to implement a QueryBus. Basically, I want to register a list of QueryHandlers. Each QueryHandler implements a handle method defined by an interface. Each QueryHandler is associated to a Query. I want to be able to retrieve a QueryHandler using the Query and call handle on it.
The thing is the handle has to be generic because each QueryHandler handles a Query differently. They all take a dedicated Query and may return whatever they want.
interface Query<R>
interface QueryHandler<R, Q : Query<R>> {
fun handle(query: Q): R
fun listenTo(): String
}
// DTOs
data class BookDto(val name: String)
// List books query
data class ListBooksQuery(val page: Int = 1): Query<List<BookDto>>
class ListBooksQueryHandler: QueryHandler<List<BookDto>, ListBooksQuery> {
override fun handle(query: ListBooksQuery): List<BookDto> {
return listOf(BookDto("Dune"), BookDto("Dune II"))
}
override fun listenTo(): String = ListBooksQuery::class.toString()
}
// Get book query
data class GetBookQuery(val name: String): Query<BookDto?>
class GetBookQueryHandler: QueryHandler<BookDto?, GetBookQuery> {
override fun handle(query: GetBookQuery): BookDto {
return BookDto("Dune")
}
override fun listenTo(): String = GetBookQuery::class.toString()
}
// Run it!
fun main(args: Array<String>) {
// Initializing query bus
val queryHandlers = mapOf(
with(ListBooksQueryHandler()) {this.listenTo() to this},
with(GetBookQueryHandler()) {this.listenTo() to this}
)
val command = ListBooksQuery()
val result = queryHandlers[command::class.toString()].handle(command)
// Should print the list of BookDto
print(result)
}
I don't even know if its possible, to be honest.
UPDATE 1:
I changed the usage example in the main to show what I am really trying to do. The List was for (bad?) demonstration purpose. I want to store the QueryHandlers and retrieve them from a map.
Additional resources:
Here is what I really want to do:
https://gist.github.com/ValentinTrinque/76b7a32221884a46e657090b9ee60193
UPDATE I've read your gist and tried to come up with a solution that will provide a clean interface to the user of the QueryBusMiddleware.
Note that I used objects instead of classes for the QueryHandler implementations, which felt more natural to me (since there is only one possible entry in the map for each Query implementation).
interface Query<R>
interface QueryHandler<R, Q: Query<R>> {
fun handle(query: Q): R
fun listenTo(): String
}
// DTOs
data class BookDto(val name: String)
// List books query
data class ListBooksQuery(val page: Int = 1): Query<List<BookDto>>
object ListBooksQueryHandler: QueryHandler<List<BookDto>, ListBooksQuery> {
override fun handle(query: ListBooksQuery): List<BookDto> {
return listOf(BookDto("Dune"), BookDto("Dune II"))
}
override fun listenTo(): String = ListBooksQuery::class.toString()
}
// Get book query
data class GetBookQuery(val name: String): Query<BookDto?>
object GetBookQueryHandler: QueryHandler<BookDto?, GetBookQuery> {
override fun handle(query: GetBookQuery): BookDto {
return BookDto("Dune")
}
override fun listenTo(): String = GetBookQuery::class.toString()
}
// Run it!
fun main(args: Array<String>) {
// Initializing query bus
val queryHandlers = listOf(
ListBooksQueryHandler,
GetBookQueryHandler
)
val dispatcher: QueryBusMiddleware = QueryDispatcherMiddleware(queryHandlers)
// Calling query bus
val query = ListBooksQuery()
// Result should be List<BookDto>
val result = dispatcher.dispatch(query)
print(result)
}
interface QueryBusMiddleware {
fun <R, Q : Query<R>> dispatch(query: Q): R
}
class QueryDispatcherMiddleware constructor(handlers: List<QueryHandler<*, *>>) : QueryBusMiddleware {
private val handlers = HashMap<String, QueryHandler<*, *>>()
init {
handlers.forEach { handler -> this.handlers[handler.listenTo()] = handler }
}
override fun <R, Q : Query<R>> dispatch(query: Q): R {
val queryClass = query::class.toString()
val handler = handlers[queryClass] ?: throw Exception("No handler listen to the query: $queryClass")
return handler::class.members.find { it.name == "handle" }!!.call(handler, query) as R
}
}