I noticed that running a SELECT count(*) FROM myTable on my larger BQ tables yields long running times, upwards of 30/40 seconds despite the validator claiming the query processes 0 bytes. This doesn't seem quite right when 500 GB queries run faster. Additionally, total row counts are listed under details -> Table Info. Am I doing something wrong? Is there a way to get total row counts instantly?
When you run a count BigQuery still needs to allocate resources (such as: slot units, shards etc). You might be reaching some limits which cause a delay. For example, the slots default per project is 2,000 units.
BigQuery execution plan provides very detail information about the process which can help you better understand the source of the delay.
One way to overcome this is to use an approximate method described in this link
This Slide by Google might also help you
For more details see this video about how to understand the execution plan
Related
I have been exploring the Crux dataset in big query for last 10 days to extract data for data studio report. Though I consider myself good at SQL, as I have mostly worked with oracle and SQL server, I am finding it very hard to write queries against this dataset. I started from this article by Rick Viscomi, explored the queries on his github repo but still unable to figure it out.
I am trying to use the materialized table chrome-ux-report.materialized.metrics_summary to get some of the metrics but I am not sure if the Min/Avg/Max lcp (in milliseconds) for a time period (month for example) could be extracted from this table. What other queries could I possibly try which requires less data processing. (Some of the queries that I tried expired my free TB of data processing on big query).
Any suggestion, advise solution, queries are more than welcome since the documentation about the structure of the dataset and queries against it is not very clear.
For details about the fields used on the report you can check on the main documentation for the chrome ux report specially on the last part with data format which shows the dimensions and how its interpreted as show below:
Dimension
origin "https://example.com"
effective_connection_type.name 4G
form_factor.name "phone"
first_paint.histogram.start 1000
first_paint.histogram.end 1200
first_paint.histogram.density 0.123
For example, the above shows a sample record from the Chrome User Experience Report, which indicates that 12.3% of page loads had a “first paint time” measurement in the range of 1000-1200 milliseconds when loading “http://example.com” on a “phone” device over a ”4G”-like connection. To obtain a cumulative value of users experiencing a first paint time below 1200 milliseconds, you can add up all records whose histogram’s “end” value is less than or equal to 1200.
For the metrics, in the initial link there is a section called methodology where you can get information about the metrics and dimensions of the report. I recommend going to the actual origin source table per country and per site and not the summary as the data you are looking for can be obtained there. In the Bigquery part of the documentation you will find samples of how to query those tables. I find this relatable:
SELECT
SUM(bin.density) AS density
FROM
`chrome-ux-report.chrome_ux_report.201710`,
UNNEST(first_contentful_paint.histogram.bin) AS bin
WHERE
bin.start < 1000 AND
origin = 'http://example.com'
In the example above we’re adding all of the density values in the FCP histogram for “http://example.com” where the FCP bin’s start value is less than 1000 ms. The result is 0.7537, which indicates that ~75.4% of page loads experience the FCP in under a second.
About query estimation cost, you can see estimating query cost guide on google official bigquery documentation. But using this tables due to its nature consumes a lot of processing so filter it as much as possible.
Is there a way to check how many slots were used by a query over the period of its execution in BigQuery? I checked the execution plan but I could just see the Slot Time in ms but could not see any parameter or any graph to show the number of slots used over the period of execution. I even tried looking at Stackdriver Monitoring but I could not find anything like this. Please let me know if it can be calculated in some way or if I can see it somewhere I might've missed seeing.
A BigQuery job will report the total number of slot-milliseconds from the extended query stats in the job metadata, which is analogous to computational cost. Each stage of the query plan also indicates input stats for the stage, which can be used to indicate the number of units of work each stage dispatched.
More details about the representation can be found in the REST reference for jobs. See query.statistics.totalSlotMs and statistics.query.queryPlan[].parallelInputs for more information.
BigQuery now provides a key in the Jobs API JSON called "timeline". This structure provides "statistics.query.timeline[].completedUnits" which you can obtain either during job execution or after. If you choose to pull this information after a job has executed, "completedUnits" will be the cumulative sum of all the units of work (slots) utilised during the query execution.
The question might have two parts though: (1) Total number of slots utilised (units of work completed) or (2) Maximum parallel number of units used at a point in time by the query.
For (1), the answer is as above, given by "completedUnits".
For (2), you might need to consider the maximum value of queryPlan.parallelInputs across all query stages, which would indicate the maximum "number of parallelizable units of work for the stage" (https://cloud.google.com/bigquery/query-plan-explanation)
If, after this, you additionally want to know if the 2000 parallel slots that you are allocated across your entire on-demand query project is sufficient, you'd need to find the point in time across all queries taking place in your project where the slots being utilised is at a maximum. This is not a trivial task, but Stackdriver monitoring provides the clearest view for you on this.
Hi,there.
Recently,I want to run a query in bigquery web UI by using "group by" over some tables(tables' name suits xxx_mst_yyyymmdd).The rows will be over 10 million. Unhappily,the query failed with this error:
Query Failed
Error: Resources exceeded during query execution.
I did some improvements with my query language,the error may not happen for this time.But with the increasement of my data, the Error will also appear in the future.So I checked the latest release of Bigquery,maybe there two ways to solve this:
1.After 2016/01/01,Bigquery will change the Query pricing tiers to satisfy the "High Compute Tiers" so that the "resourcesExceeded error" will not happen again.
2.BigQuery Slots.
I checked some documents in Google and didn't find a way on how to use BigQuery Slots.Is there any sample or usecase of BigQuery Slots?Or I have to contact with BigQuery Team to open the function?
Hope someone can help me to answer this question,thanks very much!
A couple of points:
I'm surprised that a GROUP BY with a cardinality of 10M failed with resources exceeded. Can you provide a job id of the failed query so we can investigate? You mention that you're concerned about hitting these errors more often as your data size increases; you should likely be able to increase your data size by a few more orders of magnitude without seeing this; likely you've encountered either a bug or something was strange with either your query or your data.
"High Compute Tiers" won't necessarily get rid of resourcesExceeded. For the most part, resourcesExceeded means that BigQuery ran into memory limitations; high compute tiers only address CPU usage. (and note, they haven't been enabled yet).
BigQuery slots enable you to process data faster and with more reliable performance. For the most part, they also wouldn't help prevent resourcesExceeded errors.
There is currently (as of Nov 5) a bug where you may need to provide an EACH keyword with a GROUP BY. Recent changes should enable BigQuery to automatically select the execution strategy, so EACH shouldn't be needed, but there are a couple of cases where it doesn't pick the right one. When in doubt, add an EACH to your JOIN and GROUP BY operations.
To get your project eligible for using slots you need to contact support.
Looking for some advice on how best to architect/design and build our pipeline.
After some initial testing, we're not getting the results that we were expecting. Maybe we're just doing something stupid, or our expectations are too high.
Our data/workflow:
Google DFP writes our adserver logs (CSV compressed) directly to GCS (hourly).
A day's worth of these logs has in the region of 30-70 million records, and about 1.5-2 billion for the month.
Perform transformation on 2 of the fields, and write the row to BigQuery.
The transformation involves performing 3 REGEX operations (due to increase to 50 operations) on 2 of the fields, which produces new fields/columns.
What we've got running so far:
Built a pipeline that reads the files from GCS for a day (31.3m), and uses a ParDo to perform the transformation (we thought we'd start with just a day, but our requirements are to process months & years too).
DoFn input is a String, and its output is a BigQuery TableRow.
The pipeline is executed in the cloud with instance type "n1-standard-1" (1vCPU), as we think 1 vCPU per worker is adequate given that the transformation is not overly complex, nor CPU intensive i.e. just a mapping of Strings to Strings.
We've run the job using a few different worker configurations to see how it performs:
5 workers (5 vCPUs) took ~17 mins
5 workers (10 vCPUs) took ~16 mins (in this run we bumped up the instance to "n1-standard-2" to get double the cores to see if it improved performance)
50 min and 100 max workers with autoscale set to "BASIC" (50-100 vCPUs) took ~13 mins
100 min and 150 max workers with autoscale set to "BASIC" (100-150 vCPUs) took ~14 mins
Would those times be in line with what you would expect for our use case and pipeline?
You can also write the output to files and then load it into BigQuery using command line/console. You'd probably save some dollars of instance's uptime. This is what I've been doing after running into issues with Dataflow/BigQuery interface. Also from my experience there is some overhead bringing instances up and tearing them down (could be 3-5 minutes). Do you include this time in your measurements as well?
BigQuery has a write limit of 100,000 rows per second per table OR 6M/per minute. At 31M rows of input that would take ~ 5 minutes of just flat out writes. When you add back the discrete processing time per element & then the synchronization time (read from GCS->dispatch->...) of the graph this looks about right.
We are working on a table sharding model so you can write across a set of tables and then use table wildcards within BigQuery to aggregate across the tables (common model for typical BigQuery streaming use case). I know the BigQuery folks are also looking at increased table streaming limits, but nothing official to share.
Net-net increasing instances is not going to get you much more throughput right now.
Another approach - in the mean time while we work on improving the BigQuery sync - would be to shard your reads using pattern matching via TextIO and then run X separate pipelines targeting X number of tables. Might be a fun experiment. :-)
Make sense?
I am trying to speed up a long running query that I have (takes about 10 minutes to run...). In order to track down what part of the query is costing me the most time I included the Actual Execution Plan when I ran it and found a particular section that was taking up 55% (screen shot below)
alt text http://img109.imageshack.us/img109/9571/53218794.png
This didn't quite seem right to me so I added Print '1' and Print '2' before and after this trouble section. When I run the query for a mere 17 seconds and then cancel it the 1 and 2 print out which I'm assuming means it's getting through that section in the first 17 seconds.
alt text http://img297.imageshack.us/img297/4739/66797633.png
Am I doing something wrong here or is my Execution plan misleading me?
Metrics from perfmon will also help figure out what's going wrong... you could be running into some serious IO issues with the drive your tempDB is residing on. Additionally, run a trace and look at the CPU & IO of the actual run.
Good perfmon metrics to look at are disk queue length (avg & writes).
If you don't have access to perfmon or don't want to trace things, use "SET STATISTICS IO ON" at the beginning of your query and allow it to complete...don't stop it. Just because an execution plan says it's taking over have the cost doesn't mean it will run for half of the query time...it could be much more (or less).
It says Query 10: Query cost (relative to the batch): 55%. Are 100% positive that it is the 10th statement in the batch that you surounded with Print statements? Could the INSERT ... INTO #mpProgramSet2 execute multiple times, some times in under 17 seconds other time for 5 minutes, depending on how much data was selected/inserted?
As a side note you should run with SET STATISTICS TIME ON rather that prints, this will give you exact compile/time and execution time of each statement in the batch.
I wouldn't trust that printing the '1' and '2' will prove anything about what has executed and what has not. I do the same thing, but I just wouldn't rely on it as proof. You could print the ##rowcount from that first insert query - that would indicate for sure that the insert has occurred.
Although the plan says that query may take 55% of the cost, it may not be 55% of the execution time, especially if the query results are cached.
Another advantage of printing the ##rowcount is to compare the actual number of rows to the estimated rows (51K). If they differ by a lot then you might investigate the statistics for your indexes.
We would need the full query to understand what's going on; but I would probably start with setting MAXDOP to 1 in order to limit the number of processors it's running on.
Note that sometimes queries need to be limited to only 1 processor due to locks etc.
Further you might try adding NOLOCKs to any of your selects which can get away with dirty reads.