fast.ai equivalent in tensorflow - tensorflow

Is there any equivalent/alternate library to fastai in tensorfow for easier training and debugging deep learning models including analysis on results of trained model in Tensorflow.
Fastai is built on top of pytorch looking for similar one in tensorflow.

The obvious choice would be to use tf.keras.
It is bundled with tensorflow and is becoming its official "high-level" API -- to the point where in TF 2 you would probably need to go out of your way not using it at all.
It is clearly the source of inspiration for fastai to easy the use of pytorch as Keras does for tensorflow, as mentionned by the authors time and again:
Unfortunately, Pytorch was a long way from being a good option for part one of the course, which is designed to be accessible to people with no machine learning background. It did not have anything like the clear simple API of Keras for training models. Every project required dozens of lines of code just to implement the basics of training a neural network. Unlike Keras, where the defaults are thoughtfully chosen to be as useful as possible, Pytorch required everything to be specified in detail. However, we also realised that Keras could be even better. We noticed that we kept on making the same mistakes in Keras, such as failing to shuffle our data when we needed to, or vice versa. Also, many recent best practices were not being incorporated into Keras, particularly in the rapidly developing field of natural language processing. We wondered if we could build something that could be even better than Keras for rapidly training world-class deep learning models.

Related

How to use the models under tensorflow/models/research/object_detection/models?

I'm looking into training an object detection network using Tensorflow, and I had a look at the TF2 Model Zoo. I noticed that there are noticeably less models there than in the directory /models/research/models/, including the MobileDet with SSDLite developed for the jetson xavier.
To clarify, the readme says that there is a MobileDet GPU with SSDLite, and that the model and checkpoints trained on COCO are provided, yet I couldn't find them anywhere in the repo.
How is one supposed to use those models?
I already have a custom-trained MobileDetv3 for image classification, and I was hoping to see a way to turn the network into an object detection network, in accordance with the MobileDetv3 paper. If this is not straightforward, training one network from scratch could be ok too, I just need to know where to even start from.
If you plan to use the object detection API, you can't use your existing model. You have to choose from a list of models here for v2 and here for v1
The documentation is very well maintained and the steps to train or validate or run inference (test) on custom data is very well explained here by the TensorFlow team. The link is meant for TensorFlow version v2. However, if you wish to use v1, the process is fairly similar and there are numerous blogs/videos explaining how to go about it

What does DeepMind's Sonnet afford that Keras doesn't?

I'm really confused about the purpose of DeepMind's Sonnet library for TensorFlow. As far as I can tell from the documentation, it seems to do essentially what Keras does (flexible functional abstractions). Can someone tell me what the advantage of Sonnet is?
There isn't much difference between them. They are both:
High-level object oriented libraries that bring about abstraction when developing neural networks (NN) or other machine learning (ML) algorithms.
Built on top of TensorFlow (with the addition of Theano for Keras).
So why did they make Sonnet? It appears that Keras doesn't seem to suit the needs of DeepMind. So DeepMind came up with Sonnet, a high-level object oriented programming library built on top of TensorFlow to address its research needs.
Keras and Sonnet are both trying to simplify deep reinforcement learning, with the major difference being Sonnet is specifically adapted to the problems that DeepMind explores.
The main advantage of Sonnet, from my perspective, is you can use it to reproduce the research demonstrated in DeepMind's papers with greater ease than keras, since DeepMind will be using Sonnet themselves. Aside from that advantage, it's just yet another framework with which to explore deep RL problems.

TFLearn, tf.contrib.learn or tf.estimator?

I've been tooling around with Tensorflow and TFLearn for a few months. I've made some progress. However, I was expecting to be able to construct a functioning scikit-learn type Estimator as a TFLearn.DNN. I can fit, and I can predict, but I can't do cross-validation because evaluate is failing for me. TensorFlow is throwing:
ValueError: Cannot use the given session to evaluate tensor: the tensor's graph is different from the session's graph.
when I call evaluate. I thought the whole point of the TFLearn API was to abstract things like session management away from my code.
I have asked questions about problems I've had with TFLearn in several forums, including on the project's GitHub page. Unfortunately, I'm not getting any answers.
A few days ago, suddenly I encountered the tf.contrib.learn namespace. I'm seeing a lot of overlap between those classes and TFLearn. Then, I also found the tf.estimator class.
Finally, I just figured out that tensorflow.contrib sub-packages are third-party contributions. This leads me to wonder whether the original TFLearn is simply being absorbed into the larger TensorFlow package. Which direction is the code flowing?
I don't care what I use, as long as I get all the functionality of a scikit-learn estimator object.
I think it's best to use the official sub-modules of TensorFlow like tf.data and tf.estimator. They should be well maintained and features are added quickly.
For instance, #mrry seems in charge of tf.data and the module is very clean, easy to use and compatible with tf.estimator.
The module tf.estimator is a bit less clear, and comes from tf.contrib.learn. Don't take my word for it but I think tf.estimator will slowly replace tf.contrib.learn and it should be the official high-level API for TensorFlow (along with tf.keras).
You can find more information in the official blog post, where they explain the relationship between all modules.

Compare deep learning framework between TensorFlow and PaddlePaddle

I want to study on the research of deep learning, but I don't know which framwork should I choice between TensorFlow and PaddlePaddle. who can make a contrast between the two frameworks? which one is better? especially in the running efficiency of CPU
It really depends what you are shooting for...
If you plan on training, CPU is not going to work well for you. Use colab or kaggle.
Assuming you do get a GPU, it depends if you want to focus on classification or object detection.
If you focus on classification, Keras is probably the easiest to work with or pytorch if you want some advanced stuff and to be able to change things.
If you plan on object detection, things are getting complicated... Inference is reasonably easy but training is complicated. There are actually 4 platforms you should consider:
Tensorflow - powerful but very difficult to work with. If you do not use Keras (and for OD you usually can't), you need to preprocess the dataset into tfrecords and it is a pain. The OD Api has very cryptic messages and it is very sensitive to the combination of tf version and api version. On the other hand, cool models like efficientdet are more or less easy to use.
MMdetection - very powerful framework, has lots of advanced models and once you understand how to work with it, you can easily work with and of the models it supports. Downside is that some models are slow to arrive (efficientdet, for example)
paddlepaddle - if you know Chinese, this should work ok, maybe. The documentation is a bit behind and usually requires lots of improvisation. Basically it is similar to mmdetection just with a few unique models and a few missing models.
detectron2 - I didn't work with this one, but it seems to support only a few models.
You probably need first to define for yourself what do you want to do and then choose.
Good luck!
It is not that trivial. Some models run faster with one kind of framework others with another. Furthermore, it depends on the hardware as well. See this blog. If inference is your only concern, then you can develop your model in any of the popular frameworks like TensorFlow, PyTorch, etc. In the end convert your model to ONNX format and benchmark its performance with DNN-Bench to choose the best inference engine for your application.

TensorFlow in production: How to retrain your models

I have a question related to this one:
TensorFlow in production for real time predictions in high traffic app - how to use?
I want to setup TensorFlow Serving to do inference as a service for our other application. I see how TensorFlow Serving helps me to do that. Additionally, it mentions a continuous training pipeline, which probably is related to the possibility that TensorFlow Serving can serve with multiple versions of a trained model. But what I am not sure is how to retrain your model as you get new data. The other post mentions the idea to run retraining with cron jobs. However, I am not sure if automatic retraining is a good idea. What architecture would you propose for a continuous retraining pipeline with a system continuously facing new, labelled data?
Edit: It is a supervised learning case. The question is would you automatically retrain your model after n new datapoints came in or would you retrain during the downtime of the customer automatically or just retrain manually?
You probably want to use some kind of semi-supervised training. There's fairly extensive research in that area.
A crude, but expedient way, which works well, is to use the current best models that you have to label the new, incoming data. Models are typically able to produce a score (hopefully a logprob). You can use that score to only train on the data that fits well.
That is an approach that we have used in speech recognition and is an excellent baseline.