I have the following animated subplots that simulate histograms of four different distributions:
import numpy
from matplotlib.pylab import *
import matplotlib.animation as animation
n = 100
# generate 4 random variables from the random, gamma, exponential, and uniform distributions
x1 = np.random.normal(-2.5, 1, 10000)
x2 = np.random.gamma(2, 1.5, 10000)
x3 = np.random.exponential(2, 10000)+7
x4 = np.random.uniform(14,20, 10000)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
def updateData(curr):
if curr == n:
a.event_source.stop()
ax1.hist(x1[:curr], normed=True, bins=20, alpha=0.5)
ax2.hist(x2[:curr], normed=True, bins=20, alpha=0.5)
ax3.hist(x3[:curr], normed=True, bins=20, alpha=0.5)
ax4.hist(x4[:curr], normed=True, bins=20, alpha=0.5)
simulation = animation.FuncAnimation(fig, updateData, interval=20, repeat=False)
plt.show()
It works, but for some reason the normed=True is being ignored for the y-axis scaling. If I take these plots out of the animation, they scale properly. How do I get proper scaling in the animation?
EDIT
Instead of having a scale like this (outside of animation):
I get (inside of animation):
The normed = True argument to the histogram makes the histogram plot the density of the distribution. From the documentation:
normed : boolean, optional
If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e., n/(len(x)`dbin), i.e., the integral of the histogram will sum to 1. If stacked is also True, the sum of the histograms is normalized to 1.
Default is False
This means that the hight of the histogram bar depends on the bin width. If only one data point is plotted as is the case at the beginning of the animation the bar height will be 1./binwidth. If the bin width is smaller than zero, the bar height might become very large.
It's therefore a good idea to fix the bins and use them throughout the animation.
It's also reasonable to clear the axes such that there are not 100 different histograms being plotted.
import numpy as np
from matplotlib.pylab import *
import matplotlib.animation as animation
# generate 4 random variables from the random, gamma, exponential, and uniform distribution
x1 = np.random.normal(-2.5, 1, 10000)
x2 = np.random.gamma(2, 1.5, 10000)
x3 = np.random.exponential(2, 10000)+7
x4 = np.random.uniform(14,20, 10000)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
def updateData(curr):
if curr <=2: return
for ax in (ax1, ax2, ax3, ax4):
ax.clear()
ax1.hist(x1[:curr], normed=True, bins=np.linspace(-6,1, num=21), alpha=0.5)
ax2.hist(x2[:curr], normed=True, bins=np.linspace(0,15,num=21), alpha=0.5)
ax3.hist(x3[:curr], normed=True, bins=np.linspace(7,20,num=21), alpha=0.5)
ax4.hist(x4[:curr], normed=True, bins=np.linspace(14,20,num=21), alpha=0.5)
simulation = animation.FuncAnimation(fig, updateData, interval=50, repeat=False)
plt.show()
Yeah!! I also faced the same problem,
if you are getting such kind of problem don't forget to clear the axis before displaying each frame of the animation.
use
plt.cla()
or
ax.clear()(in your case)
for each axis
before doing the plot in the function defined for animation
Got it!
My iterating over n was the culprit. This does what I expected:
def updateData(curr):
curr2=100+curr*5
#if curr == n:
# a.event_source.stop()
ax1.hist(x1[:curr2], normed=True, bins=20, alpha=0.5)
ax2.hist(x2[:curr2], normed=True, bins=20, alpha=0.5)
ax3.hist(x3[:curr2], normed=True, bins=20, alpha=0.5)
ax4.hist(x4[:curr2], normed=True, bins=20, alpha=0.5)
simulation = animation.FuncAnimation(fig, updateData, frames=900, interval=10)
plt.show()
Related
I recently came across a way to refresh a plot with an incoming data stream.
The gist of the script is shown below.
plt.show(block=False) fig = plt.figure()
ax = plt.imshow(data_array, cmap='Greens', interpolation='None',clim=[0, 1], origin='lower', extent=extent, aspect='auto')
for i in range(100):
updating data_array...
ax.set_array(data_array)
fig.canvas.draw()
fig.canvas.flush_events()
This worked very well for a single plot and I wanted to apply this to have two subplots being refreshed in real time.
Below is what I tried.
plt.show(block=False)
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1 = plt.imshow(data_array_1, cmap='Greens', interpolation='None',clim=[0, 1], origin='lower', extent=extent, aspect='auto')
ax2 = plt.imshow(data_array_2, cmap='Greens', interpolation='None',clim=[0, 1], origin='lower', extent=extent, aspect='auto')
for i in range(100):
updating data_array_1... and data_array_2
ax1.set_array(data_array_1)
ax2.set_array(data_array_2)
fig.canvas.draw()
fig.canvas.flush_events()
Unfortunately, this ended up not working as I hoped.
While I managed to put a plot inside a plot (see the question here), I am finding trouble putting a colorbar to the larger (outside) plot. The code below is as simple as it gets, but for some reason it places the colorbar in the wrong axis:
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
# Canvas
fig, ax1 = plt.subplots(figsize=(12, 10))
left, bottom, width, height = [0.65, 0.15, 0.32, 0.30]
ax2 = fig.add_axes([left, bottom, width, height])
# Labels
xlabel = 'x'
ylabel = 'y'
cbarlabel = 'Color'
cmap = plt.get_cmap('turbo')
# Data
x, y, z = np.random.rand(3,200)
# Plotting
sc = ax1.scatter(x, y, marker='o', c=z, cmap=cmap)
ax2.scatter(x, y, c=z, cmap=cmap)
#
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel)
ax1.legend(fontsize=12, loc='upper left')
plt.tight_layout()
# Colormap
ax1 = plt.gca()
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "2%", pad="1%")
cbar = plt.colorbar(sc, cax=cax) # Colorbar
cbar.set_label(cbarlabel, rotation=270, labelpad=30)
sc.set_clim(vmin=min(z), vmax=max(z))
#
plt.show()
I have also tried inset_axes as in the documentation example, to no avail.
The trick is to actually set active axes with plt.sca(ax1) and then create colorbar. I also simplified a code little bit.
Here is modified code putting colormap to the large plot:
import matplotlib.pyplot as plt
import numpy as np
from numpy import random
# Canvas
fig, ax1 = plt.subplots(figsize=(12, 10))
left, bottom, width, height = [0.45, 0.15, 0.32, 0.30]
ax2 = fig.add_axes([left, bottom, width, height])
# Labels
xlabel = 'x'
ylabel = 'y'
cbarlabel = 'Color'
cmap = plt.get_cmap('turbo')
# Data
x, y, z = np.random.rand(3,200)
# Plotting
sc = ax1.scatter(x, y, marker='o', c=z, cmap=cmap)
ax2.scatter(x, y, c=z, cmap=cmap)
# Set active axes
plt.sca(ax1)
cbar = plt.colorbar(sc) # Colorbar
cbar.set_label(cbarlabel, rotation=270, labelpad=30)
sc.set_clim(vmin=min(z), vmax=max(z))
#
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel)
ax1.legend(fontsize=12, loc='upper left')
plt.tight_layout()
plt.show()
Resulting in:
When using matplotlib's scatter module for plotting scattered data on 3D, the options color and marker do not behave as expected, e.g.,
color='r', marker='o' produce blue dots surrounded by red circles, instead of just filled red circles.
Why this is happening?
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
N = 100
x = 0.9 * np.random.rand(N)
y = 0.9 * np.random.rand(N)
z = 0.9 * np.random.rand(N)
##### Plotting:
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x, y, z, color='r', marker='o')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
The code from the question produces the expected plot with red points in matplotlib 2.0.2. If you have an older version, this may be different.
Other than
ax.scatter(x, y, z, color='r', marker='o')
You may also try to use the c argument, which is usually meant to define the color of a scatter
ax.scatter(x, y, z, c='r', marker='o')
You may also use the facecolors argument
ax.scatter(x, y, z, facecolors='r', marker='o')
I'm plotting subplots with matplotlib and the legend does not show up for some plots.
In this example, the scatter plot legend does not show up.
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.legend_handler import HandlerLine2D
from matplotlib.patches import Rectangle, Circle
fig = plt.figure()
plt.cla()
plt.clf()
x = np.arange(5) + 1
y = np.full(5, 10)
fig, subplots = plt.subplots(2, sharex=False, sharey=False)
subplots[0].bar(x, y, color='r', alpha=0.5, label='a')
scat = subplots[0].scatter(x, y-1, color='g', label='c')
subplots[0].set_yscale('log')
subplots[1].bar(x, y, color='r', alpha=0.5, label='a')
x = [2, 3]
y = [4, 4]
subplots[1].bar(x, y, color='b', alpha=1, label='b')
subplots[1].set_yscale('log')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), handler_map={scat: HandlerLine2D(numpoints=4)})
plt.show()
Here is what I tried as a workaround:
p1 = Rectangle((0, 0), 1, 1, fc="r", alpha=0.5)
p2 = Rectangle((0, 0), 1, 1, fc="b")
p3 = Circle((0, 0), 1, fc="g")
legend([p1, p2, p3], ['a', 'b', 'c'], loc='center left', bbox_to_anchor=(1, 0.5))
I really prefer to fix this without the workaround so if anyone knows how to fix it please let me know.
Also, an issue with the workaround is that the Circle object still appears as a bar on the legend.
plt.legend starts with a gca() (which returns the current axes):
# from pyplot.py:
def legend(*args, **kwargs):
ret = gca().legend(*args, **kwargs)
So calling plt.legend will only get you a legend on your last subplot. But it is also possible to call e.g. ax.legend(), or in your case subplots[0].legend(). Adding that to the end of your code gives me a legend for both subplots.
Sample:
for subplot in subplots:
subplot.legend(loc='center left', bbox_to_anchor=(1, 0.5))
I am not able to get nicer spaces between the xticks with the following code:
import random
import matplotlib.pyplot as plt
coverages = [random.randint(1,10)*2] * 100
contig_names = ['AAB0008r'] * len(coverages)
fig = plt.figure()
fig.clf()
ax = fig.add_subplot(111)
ax.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ind = range(len(coverages))
rects = ax.bar(ind, coverages, width=0.2, align='center', color='thistle')
ax.set_xticks(ind)
ax.set_xticklabels(contig_names)
#function to auto-rotate the x axis labels
fig.autofmt_xdate()
plt.show()
How to get more space between the xticks so they do not look like overlapped anymore?
Thank you in advance.
You can try changing the figure size, the size of the xticklabels, their angle of rotation, etc.
# Set the figure size
fig = plt.figure(1, [20, 8])
# Set the x-axis limit
ax.set_xlim(-1,100)
# Change of fontsize and angle of xticklabels
plt.setp(ax.get_xticklabels(), fontsize=10, rotation='vertical')