YOLO v3 complete architecture - tensorflow

I am attempting to implement YOLO v3 in Tensorflow-Keras from scratch, with the aim of training my own model on a custom dataset. By that, I mean without using pretrained weights. I have gone through all three papers for YOLOv1, YOLOv2(YOLO9000) and YOLOv3, and find that although Darknet53 is used as a feature extractor for YOLOv3, I am unable to point out the complete architecture which extends after that - the "detection" layers talked about here. After a lot of reading on blog posts from Medium, kdnuggets and other similar sites, I ended up with a few significant questions:
Have I have missed the complete architecture of the detection layers (that extend after Darknet53 used for feature extraction) in YOLOv3 paper somewhere?
The author seems to use different image sizes at different stages of training. Does the network automatically do this upscaling/downscaling of images?
For preprocessing the images, is it really just enough to resize them and then normalize it (dividing by 255)?
Please be kind enough to point me in the right direction. I appreciate the help!

Related

How does custom object detection actually work?

I am currently testing out custom object detection using the Tensorflow API. But I don't quite seem to understand the theory behind it.
So if I for example download a version of MobileNet and use it to train on, lets say, red and green apples. Does it forget all the things that is has already been trained on? And if so, why does it then benefit to use MobileNet over building a CNN from scratch.
Thanks for any answers!
Does it forget all the things that is has already been trained on?
Yes, if you re-train a CNN previously trained on a large database with a new database containing fewer classes it will "forget" the old classes. However, the old pre-training can help learning the new classes, this is a training strategy called "transfert learning" of "fine tuning" depending on the exact approach.
As a rule of thumb it is generally not a good idea to create a new network architecture from scratch as better networks probably already exist. You may want to implement your custom architecture if:
You are learning CNN's and deep learning
You have a specific need and you proved that other architectures won't fit or will perform poorly
Usually, one take an existing pre-trained network and specialize it for their specific task using transfert learning.
A lot of scientific literature is available for free online if you want to learn. you can start with the Yolo series and R-CNN, Fast-RCNN and Faster-RCNN for detection networks.
The main concept behind object detection is that it divides the input image in a grid of N patches, and then for each patch, it generates a set of sub-patches with different aspect ratios, let's say it generates M rectangular sub-patches. In total you need to classify MxN images.
In general the idea is then analyze each sub-patch within each patch . You pass the sub-patch to the classifier in your model and depending on the model training, it will classify it as containing a green apple/red apple/nothing. If it is classified as a red apple, then this sub-patch is the bounding box of the object detected.
So actually, there are two parts you are interested in:
Generating as many sub-patches as possible to cover as many portions of the image as possible (Of course, the more sub-patches, the slower your model will be) and,
The classifier. The classifier is normally an already exisiting network (MobileNeet, VGG, ResNet...). This part is commonly used as the "backbone" and it will extract the features of the input image. With the classifier you can either choose to training it "from zero", therefore your weights will be adjusted to your specific problem, OR, you can load the weigths from other known problem and use them in your problem so you won't need to spend time training them. In this case, they will also classify the objects for which the classifier was training for.
Take a look at the Mask-RCNN implementation. I find very interesting how they explain the process. In this architecture, you will not only generate a bounding box but also segment the object of interest.

Bald detection using Keras

I was wondering if anyone can help by providing me with some guidelines for creating a bald-or-not image classifier.
So far I have a model for face and eye detection and to sum it up, this is my main questions:
Where can I find datasets for this kind of classification without going to google and download thousands of images by hand?
What classification model (i.e. the structure of layers in the network) should be used for this?
Question 1:
You could start by looking at some of the datasets available in Kaggle or Tensor Flow Datasets to see if there is anything available.
If none, you could try using an Image scraper tool to download images quickly compared to by hand.
Question 2:
Typically Image Classification model uses Convolutional Layers and MaxPooling layers. On top of the commonly used Dense Layer for Multi-layer Perceptron.
To get started you can study the Tensor Flow tutorial for Image Classification in this link,
which classifies whether the Image is Cat or Dog.
This example can provide you with the general idea of how to build an Image Classifier.
Hope this helps you. Thanks

How to know what Tensorflow actually "see"?

I'm using cnn built by keras(tensorflow) to do visual recognition.
I wonder if there is a way to know what my own tensorflow model "see".
Google had a news showing the cat face in the AI brain.
https://www.smithsonianmag.com/innovation/one-step-closer-to-a-brain-79159265/
Can anybody tell me how to take out the image in my own cnn networks.
For example, what my own cnn model recognize a car?
We have to distinguish between what Tensorflow actually see:
As we go deeper into the network, the feature maps look less like the
original image and more like an abstract representation of it. As you
can see in block3_conv1 the cat is somewhat visible, but after that it
becomes unrecognizable. The reason is that deeper feature maps encode
high level concepts like “cat nose” or “dog ear” while lower level
feature maps detect simple edges and shapes. That’s why deeper feature
maps contain less information about the image and more about the class
of the image. They still encode useful features, but they are less
visually interpretable by us.
and what we can reconstruct from it as a result of some kind of reverse deconvolution (which is not a real math deconvolution in fact) process.
To answer to your real question, there is a lot of good example solution out there, one you can study it with success: Visualizing output of convolutional layer in tensorflow.
When you are building a model to perform visual recognition, you actually give it similar kinds of labelled data or pictures in this case to it to recognize so that it can modify its weights according to the training data. If you wish to build a model that can recognize a car, you have to perform training on a large train data containing labelled pictures. This type of recognition is basically a categorical recognition.
You can experiment with the MNIST dataset which provides with a dataset of pictures of digits for image recognition.

how to use tensorflow object detection API for face detection

Open CV provides a simple API to detect and extract faces from given images. ( I do not think it works perfectly fine though because I experienced that it cuts frames from the input pictures that have nothing to do with face images. )
I wonder if tensorflow API can be used for face detection. I failed finding relevant information but hoping that maybe an experienced person in the field can guide me on this subject. Can tensorflow's object detection API be used for face detection as well in the same way as Open CV does? (I mean, you just call the API function and it gives you the face image from the given input image.)
You can, but some work is needed.
First, take a look at the object detection README. There are some useful articles you should follow. Specifically: (1) Configuring an object detection pipeline, (3) Preparing inputs and (3) Running locally. You should start with an existing architecture with a pre-trained model. Pretrained models can be found in Model Zoo, and their corresponding configuration files can be found here.
The most common pre-trained models in Model Zoo are on COCO dataset. Unfortunately this dataset doesn't contain face as a class (but does contain person).
Instead, you can start with a pre-trained model on Open Images, such as faster_rcnn_inception_resnet_v2_atrous_oid, which does contain face as a class.
Note that this model is larger and slower than common architectures used on COCO dataset, such as SSDLite over MobileNetV1/V2. This is because Open Images has a lot more classes than COCO, and therefore a well working model need to be much more expressive in order to be able to distinguish between the large amount of classes and localizing them correctly.
Since you only want face detection, you can try the following two options:
If you're okay with a slower model which will probably result in better performance, start with faster_rcnn_inception_resnet_v2_atrous_oid, and you can only slightly fine-tune the model on the single class of face.
If you want a faster model, you should probably start with something like SSDLite-MobileNetV2 pre-trained on COCO, but then fine-tune it on the class of face from a different dataset, such as your own or the face subset of Open Images.
Note that the fact that the pre-trained model isn't trained on faces doesn't mean you can't fine-tune it to be, but rather that it might take more fine-tuning than a pre-trained model which was pre-trained on faces as well.
just increase the shape of the input, I tried and it's work much better

Why "softmax_cross_entropy_with_logits_v2" backprops into labels

I am wondering why in Tensorflow version 1.5.0 and later, softmax_cross_entropy_with_logits_v2 defaults to backpropagating into both labels and logits. What are some applications/scenarios where you would want to backprop into labels?
I saw the github issue below asking the same question, you might want to follow it for future updates.
https://github.com/tensorflow/minigo/issues/37
I don't speak for the developers who made this decision, but I would surmise that they would do this by default because it is indeed used often, and for most application where you aren't backpropagating into the labels, the labels are a constant anyway and won't be adversely affected.
Two common uses cases for backpropagating into labels are:
Creating adversarial examples
There is a whole field of study around building adversarial examples that fool a neural network. Many of the approaches used to do so involve training a network, then holding the network fixed and backpropagating into the labels (original image) to tweak it (under some constraints usually) to produce a result that fools the network into misclassifying the image.
Visualizing the internals of a neural network.
I also recommend people watch the deepviz toolkit video on youtube, you'll learn a ton about the internal representations learned by a neural network.
https://www.youtube.com/watch?v=AgkfIQ4IGaM
If you continue digging into that and find the original paper you'll find that they also backpropagate into the labels to generate images which highly activate certain filters in the network in order to understand them.

Categories