Using GPU capabilities for retraining images using retrain.py on tensorflow-hub - tensorflow

I am new to Tensorflow, I am using retrain.py to train some images. In case I have a larger data base of 10000 images and I have a GPU capable system. How can i use retrain.py to run on my Nvidia GPU. So that training will be done faster.
I am following the steps from the link below
https://www.tensorflow.org/hub/tutorials/image_retraining

To get GPU support, be sure to install the PIP package tensorflow-gpu instead of plain tensorflow. You should see some performance benefits from that for retrain.py. That said, retrain.py shows its age (far predating TF Hub) and does not utilize GPUs so well, because it does not properly batch images when extracting bottleneck values.
If you are ready to live on the cutting edge of TF 2.0.0alpha0 (announced last week), take a look at Hub's
examples/colab/tf2_image_retraining.ipynb which is considerably smaller, faster (if you use a GPU), and even supports fine-tuning the image module.

Related

GPU support for TensorFlow & PyTorch

Okay, so I've worked on a bunch of Deep Learning projects and internships now and I've never had to do heavy training. But lately I've been thinking of doing some Transfer Learning for which I'll need to run my code on a GPU. Now I have a system with Windows 10 and a dedicated NVIDIA GeForce 940M GPU. I've been doing a lot of research online, but I'm still a bit confused. I haven't installed the NVIDIA Cuda Toolkit or cuDNN or tensorflow-gpu on my system yet. I currently use tensorflow and pytorch to train my DL models. Here are my queries -
When I define a tensor in tf or pytorch, it is a cpu tensor by default. So, all the training I've been doing so far has been on the CPU. So, if I make sure to install the correct versions of Cuda and cuDNN and tensorflow-gpu (specifically for tensorflow), I can run my models on my GPU using tf-gpu and pytorch and that's it? (I'm aware of the torch.cuda.is_available() in pytorch to ensure pytorch can access my GPU and the device_lib module in tf to check if my gpu is visible to tensorflow)(I'm also aware of the fact that tf doesnt support all Nvidia GPUs)
Why does tf have a separate module for GPU support? PyTorch doesnt seem to have that and all you need to do is cast your tensor from cpu() to cuda() to switch between them.
Why install cuDNN? I know it is a high-level API CUDA built for support to train Deep Neural Nets on the GPU. But do tf-gpu and torch use these in the backend while training on the gpu?
After tf == 1.15, did they combine CPU and GPU support all into one package?
First of all unfortunately 940M is a kinda weak GPU for training. I suggest you use Google colab for faster training but of course, it would be faster than the CPU. So here my answers to your four questions.
1-) Yes if you install the requirements correctly, then you can run on GPU. You can manually place your data to your GPU as well. You can check implementations on TensorFlow. In PyTorch, you should specify the device that you want to use. As you said you should do device = torch.device("cuda" if args.cuda else "cpu") then for models and data you should always call .to(device) Then it will automatically use GPU if available.
2-) PyTorch also needs extra installation (module) for GPU support. However, with recent updates both TF and PyTorch are easy to use for GPU compatible code.
3-) Both Tensorflow and PyTorch is based on cuDNN. You can use them without cuDNN but as far as I know, it hurts the performance but I'm not sure about this topic.
4-) No they are still different packages. tensorflow-gpu==1.15 and tensorflow==1.15 what they did with tf2, was making the tensorflow more like Keras. So it is more simplified then 1.15 or before.
Rest was already answered by regarding 3) cudNN optimizes layer and such operations on hardware level and those implementations are pure black magic. It is incredibly hard to write CUDA code that properly utilizes your GPU (how load data into the GPU, how to actually perform them using matrices etc. )

How to optimize your tensorflow model by using TensorRT?

These are the instruction to solve the assignments?
Convert your TensorFlow model to UFF
Use TensorRT’s C++ API to parse your model to convert it to a CUDA engine.
TensorRT engine would automatically optimize your model and perform steps
like fusing layers, converting the weights to FP16 (or INT8 if you prefer) and
optimize to run on Tensor Cores, and so on.
Can anyone tell me how to proceed with this assignment because I don't have GPU in my laptop and is it possible to do this in google colab or AWS free account.
And what are the things or packages I have to install for running TensorRT in my laptop or google colab?
so I haven't used .uff but I used .onnx but from what I've seen the process is similar.
According to the documentation, with TensorFlow you can do something like:
from tensorflow.python.compiler.tensorrt import trt_convert as trt
converter = trt.TrtGraphConverter(
input_graph_def=frozen_graph,
nodes_blacklist=['logits', 'classes'])
frozen_graph = converter.convert()
In TensorFlow1.0, so they have it pretty straight forward, TrtGraphConverter has the option to serialized for FP16 like:
converter = trt.TrtGraphConverter(
input_saved_model_dir=input_saved_model_dir,
max_workspace_size_bytes=(11<32),
precision_mode=”FP16”,
maximum_cached_engines=100)
See the preciosion_mode part, once you have serialized you can load the networks easily on TensorRT, some good examples using cpp are here.
Unfortunately, you'll need a nvidia gpu with FP16 support, check this support matrix.
If I'm correct, Google Colab offered a Tesla K80 GPU which does not have FP16 support. I'm not sure about AWS but I'm certain the free tier does not have gpus.
Your cheapest option could be buying a Jetson Nano which is around ~90$, it's a very powerful board and I'm sure you'll use it in the future. Or you could rent some AWS gpu server, but that is a bit expensive and the setup progress is a pain.
Best of luck!
Export and convert your TensorFlow model into .onnx file.
Then, use this onnx-tensorrt tool to do the CUDA engine file conversion.

Does tensorflow automatically detect GPU or do I have to specify it manually?

I have a code written in tensorflow that I run on CPUs and it runs fine.
I am transferring to a new machine which has GPUs and I run the code on the new machine but the training speed did not improve as expected (takes almost the same time).
I understood that Tensorflow automatically detects GPUs and run the operations on them (https://www.quora.com/How-do-I-automatically-put-all-my-computation-in-a-GPU-in-TensorFlow) & (https://www.tensorflow.org/tutorials/using_gpu).
Do I have to change the code to make it manually runs the operations on GPUs (for now I have a single GPU)? and what would be gained by doing that manually?
Thanks
If the GPU version of TensorFlow is installed and if you don't assign all your tensors to CPU, some of them should be assigned to GPU.
To find out which devices (CPU, GPU) are available to TensorFlow, you can use this:
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
Regarding the question of the performance, it's quite a broad subject and it really depends of your model, your data and so on. Here are a few and wide remarks on TensorFlow performance.

htop cpu almost red when running tensorflow, predict is very slow

I'm using tensorflow to train a model and predict, and use htop on ubuntu to monitor cpu usage. predict is very slow, I just can't bear it. htop shows that cpu color is almost red, which means almost all cpu resource is used by system kernel threads, but cpu usage is 0% before tensorflow start.
I have not changed the thread_num, I'm using tensorflow v0.11 on ubuntu14.04.
The problem is that default glibc malloc is not efficient for small allocations. Also, because Google develops/tests tensorflow with tcmalloc internally, bad interactions with regular malloc don't get ironed out. The solution is to run TensorFlow with tcmalloc.
sudo apt-get install google-perftools
export LD_PRELOAD="/usr/lib/libtcmalloc.so.4"
python ...
If you're looking for something to improve the inference performance, I could recommend trying OpenVINO. It improves your model's accuracy by converting it to Intermediate Representation (IR), conducting graph pruning, and fusing certain operations into others. Then, in runtime, it uses vectorization. OpenVINO is optimized for Intel hardware, although it should work with any CPU.
It's rather straightforward to convert the Tensorflow model to OpenVINO unless you have fancy custom layers. The full tutorial on how to do it can be found here. Some snippets are below.
Install OpenVINO
The easiest way to do it is using PIP. Alternatively, you can use this tool to find the best way in your case.
pip install openvino-dev[tensorflow]
Use Model Optimizer to convert SavedModel model
The Model Optimizer is a command-line tool that comes from OpenVINO Development Package. It converts the Tensorflow model to IR, which is a default format for OpenVINO. You can also try the precision of FP16, which should give you better performance without a significant accuracy drop (just change data_type). Run in the command line:
mo --saved_model_dir "model" --data_type FP32 --output_dir "model_ir"
Run the inference
The converted model can be loaded by the runtime and compiled for a specific device, e.g., CPU or GPU (integrated into your CPU like Intel HD Graphics). If you don't know what the best choice for you is, use AUTO. If you care about latency, I suggest adding a performance hint (as shown below) to use the device that fulfills your requirement. If you care about throughput, change the value to THROUGHPUT or CUMULATIVE_THROUGHPUT.
# Load the network
ie = Core()
model_ir = ie.read_model(model="model_ir/model.xml")
compiled_model_ir = ie.compile_model(model=model_ir, device_name="AUTO", config={"PERFORMANCE_HINT":"LATENCY"})
# Get output layer
output_layer_ir = compiled_model_ir.output(0)
# Run inference on the input image
result = compiled_model_ir([input_image])[output_layer_ir]
Disclaimer: I work on OpenVINO.

Does Gensim library support GPU acceleration?

Using Word2vec and Doc2vec methods provided by Gensim, they have a distributed version which uses BLAS, ATLAS, etc to speedup (details here). However, is it supporting GPU mode? Is it possible to get GPU working if using Gensim?
Thank you for your question. Using GPU is on the Gensim roadmap. Will appreciate any input that you have about it.
There is a version of word2vec running on keras by #niitsuma called word2veckeras.
The code that runs on latest Keras version is in this fork and branch https://github.com/SimonPavlik/word2vec-keras-in-gensim/tree/keras106
#SimonPavlik has run performance test on this code. He found that a single gpu is slower than multiple CPUs for word2vec.
Regards
Lev